Gọi \(S\) là tập hợp tất cả các giá trị nguyên của tham số \(m\) để phương trình \( - 2{x^3} + 6{x^2} - 16x + 10 + m + \sqrt[3]{{ - {x^3} - 3x + m}} = 0\) có nghiệm \(x \in \left[ { - 1;2} \right].\) Tính tổng tất cả các phần tử của \(S.\)
Câu hỏi trong đề: [Năm 2022] Đề thi thử môn Toán THPT Quốc gia có đáp án (30 đề) !!
Quảng cáo
Trả lời:
Đáp án C.
Ta có: \( - 2{x^3} + 6{x^2} - 16x + 10 + m + \sqrt[3]{{ - {x^3} - 3x + m}} = 0\)
\( \Leftrightarrow - {x^3} - 3x + m + \sqrt[3]{{ - {x^3} - 3x + m}} = {x^3} - 6{x^2} + 13x - 10\)
\( \Leftrightarrow - {x^3} - 3x + m + \sqrt[3]{{ - {x^3} - 3x + m}} = {\left( {x - 2} \right)^3} + x - 2\)
\( \Leftrightarrow {\left( {\sqrt[3]{{ - {x^3} - 3x + m}}} \right)^3} + \sqrt[3]{{ - {x^3} - 3x + m}} = {\left( {x - 2} \right)^3} + \left( {x - 2} \right){\rm{ }}\left( * \right)\)
Xét hàm số \(y = f\left( t \right) = {t^3} + t\) có \(f'\left( t \right) = 3{t^2} + 1 >0,\forall t \in \mathbb{R}\) nên hàm số \(y = f\left( t \right)\) đồng biến trên \(\mathbb{R}.\) Do đó phương trình \(\left( * \right) \Leftrightarrow \sqrt[3]{{ - {x^3} - 3x + m}} = x - 2 \Leftrightarrow - {x^3} - 3x + m = {\left( {x - 2} \right)^3}\)
\( \Leftrightarrow - {x^3} - 3x + m = {x^3} - 6{x^2} + 12x - 8 \Leftrightarrow 2{x^3} - 6{x^2} + 15x - 8 = m\) (1)
Phương trình \( - 2{x^3} + 6{x^2} - 16x + 10 + m + \sqrt[3]{{ - {x^3} - 3x + m}} = 0\) có nghiệm \(x \in \left[ { - 1;2} \right]\) khi và chỉ khi phương trình \(\left( 1 \right)\) có nghiệm \(x \in \left[ { - 1;2} \right].\)
Xét hàm số \(y = 2{x^3} - 6{x^2} + 15x - 8\) có \(y' = 6{x^2} - 12x + 15 >0,\forall x \in \mathbb{R}\) nên hàm số này đồng biến trên \(\mathbb{R}.\)
Ta có: \(y\left( { - 1} \right) = - 31\) và \(y\left( 2 \right) = 14.\)
Do đó phương trình \(\left( 1 \right)\) có nghiệm \(x \in \left[ { - 1;2} \right]\) khi và chỉ khi \( - 31 \le m \le 14.\)
Kết hợp điều kiện \(m \in \mathbb{Z}\) ta có \(S = \left\{ { - 31; - 30; - 29;...;13;14} \right\}.\)
Vậy tổng tất cả các phần tử của tập \(S\) là \( - 391.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp ánC.
Mỗi tập hợp con gồm 2 phần tử của \(A\) tập hợp là một tổ hợp chập 2 của 6 phần tử. Do đó số tập hợp con gồm hai phần tử của tập hợp \(A\) là \(C_6^2.\)
Lời giải
Đáp án B.

Vì \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAD} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {SAD} \right) = SA\end{array} \right. \Rightarrow SA \bot \left( {ABCD} \right)\)
Ta có: \(AB = \sqrt {B{D^2} - A{D^2}} = \sqrt {{{\left( {a\sqrt 5 } \right)}^2} - {{\left( {2a} \right)}^2}} = a\)
\(SA = AB\tan {30^0} = \frac{{a\sqrt 3 }}{3}\)
\({S_{ABCD}} = \frac{{\left( {AD + BC} \right).AB}}{2} = \frac{{\left( {2a + a} \right).a}}{2} = \frac{{3{a^2}}}{2}\)
Thể tích khối chóp \(S.ABCD\) là:
\(V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 3 }}{3}.\frac{{3{a^2}}}{2} = \frac{{{a^3}\sqrt 3 }}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.