Câu hỏi:
10/05/2022 11,712Cho hàm số \[y = \frac{{x + m}}{{x + 1}}\] (\[m\] là tham số thực) thoả mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{9}{2}\). Mệnh đề nào dưới đây đúng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Điều kiện xác định: \(x + 1 \ne 0 \Leftrightarrow x \ne - 1.\)
TH1: \(m = 1\) thì \(y = 1\) (loại).
TH2: \(m \ne 1\) thì hàm số \(y = \frac{{x + m}}{{x + 1}}\) luôn đồng biến hoặc nghịch biến trên \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right).\)
Mà \(\left[ {1;2} \right] \subset \left( { - 1; + \infty } \right)\) nên \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{9}{2} \Leftrightarrow y\left( 1 \right) + y\left( 2 \right) = \frac{9}{2}\)
\( \Leftrightarrow \frac{{1 + m}}{{1 + 1}} + \frac{{2 + m}}{{2 + 1}} = \frac{9}{2}\)
\( \Leftrightarrow \frac{{1 + m}}{2} + \frac{{2 + m}}{3} = \frac{9}{2}\)
\(\begin{array}{l} \Leftrightarrow 3\left( {1 + m} \right) + 2\left( {2 + m} \right) = 2.9\\ \Leftrightarrow 5m + 7 = 27\\ \Leftrightarrow m = 4.\end{array}\)
Đáp án D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Số giá trị nguyên của tham số thực \(m\) để hàm số \(y = \frac{{mx - 2}}{{ - 2x + m}}\) nghịch biến trên khoảng \(\left( {\frac{1}{2};\, + \infty } \right)\) là
Câu 3:
Cho hàm số \[f\left( x \right) = {x^3} - 3x + m\] ( với m là tham số thực). Biết \[\mathop {\max }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = 5\] . Giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \(\left( {0; + \infty } \right)\)là
Câu 4:
Hàm số \(f(x) = a{x^4} + b{x^3} + c{x^2} + dx + e\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(f\left( {f\left( x \right)} \right) + 1 = 0\) là
Câu 5:
Cho hàm số \(y = f(x) = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số \(g(x) = f({x^3} + f(x))\) là
Câu 6:
Cho hàm số \(f\left( x \right)\) có bảng biến thiên của hàm số \(y = f'\left( x \right)\) như hình vẽ bên. Tính tổng các giá trị nguyên của tham số \(m \in \left( { - 10\,;\,10} \right)\) để hàm số \(y = f\left( {3x - 1} \right) + {x^3} - 3mx\) đồng biến trên khoảng \(\left( { - 2\,;\,1} \right)\)?
về câu hỏi!