Cho hàm số \[y = \frac{{x + m}}{{x + 1}}\] (\[m\] là tham số thực) thoả mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{9}{2}\). Mệnh đề nào dưới đây đúng?
Quảng cáo
Trả lời:
Điều kiện xác định: \(x + 1 \ne 0 \Leftrightarrow x \ne - 1.\)
TH1: \(m = 1\) thì \(y = 1\) (loại).
TH2: \(m \ne 1\) thì hàm số \(y = \frac{{x + m}}{{x + 1}}\) luôn đồng biến hoặc nghịch biến trên \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right).\)
Mà \(\left[ {1;2} \right] \subset \left( { - 1; + \infty } \right)\) nên \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{9}{2} \Leftrightarrow y\left( 1 \right) + y\left( 2 \right) = \frac{9}{2}\)
\( \Leftrightarrow \frac{{1 + m}}{{1 + 1}} + \frac{{2 + m}}{{2 + 1}} = \frac{9}{2}\)
\( \Leftrightarrow \frac{{1 + m}}{2} + \frac{{2 + m}}{3} = \frac{9}{2}\)
\(\begin{array}{l} \Leftrightarrow 3\left( {1 + m} \right) + 2\left( {2 + m} \right) = 2.9\\ \Leftrightarrow 5m + 7 = 27\\ \Leftrightarrow m = 4.\end{array}\)
Đáp án D
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C.
Dựa vào xu hướng của đồ thị hàm số ta có \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\)
Tại \(x = 0 \Rightarrow y = d < 0\)
\(y = a{x^3} + b{x^2} + cx + d \Rightarrow y' = 3a{x^2} + 2bx + c.\)
Xét thấy 2 điểm cực trị \({x_1} < 0\) và \({x_2} >0.\)</>
Ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{ - 2b}}{{3a}} >0 \Rightarrow b >0\\{x_1}{x_2} = \frac{c}{{3a}} < 0 \Rightarrow c >0\end{array} \right.\)</>
Vậy có 2 giá trị dương trong 4 giá trị \(a,b,c,d.\)
Lời giải
Tập xác định \(D = \mathbb{R}\backslash \left\{ {\frac{m}{2}} \right\}.\)
Ta có \(y' = \frac{{{m^2} - 4}}{{{{\left( { - 2x + m} \right)}^2}}}.\)
Để hàm số nghịch biến trên \(\left( {\frac{1}{2}; + \infty } \right)\) thì \(\left\{ \begin{array}{l}{m^2} - 4 < 0\\\frac{m}{2} \notin \left( {\frac{1}{2}; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \in \left( { - 2;2} \right)\\m \le 1\end{array} \right. \Leftrightarrow m \in \left( { - 2;1} \right].\)
Suy ra có các số nguyên thỏa mãn là \(\left\{ { - 1;0;1} \right\}.\)
Đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.