Câu hỏi:
11/05/2022 5,500Cho hàm số \(f\left( x \right)\) có bảng biến thiên của hàm số \(y = f'\left( x \right)\) như hình vẽ bên. Tính tổng các giá trị nguyên của tham số \(m \in \left( { - 10\,;\,10} \right)\) để hàm số \(y = f\left( {3x - 1} \right) + {x^3} - 3mx\) đồng biến trên khoảng \(\left( { - 2\,;\,1} \right)\)?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Cách 1: Ta có: \(y' = 3f'\left( {3x - 1} \right) + 3{x^2} - 3m = 3\left( {f'\left( {3x - 1} \right) + {x^2} - m} \right)\)
Để hàm số đồng biến trên \(\left( { - 2;1} \right)\) thì:
\(y' \ge 0,\forall x \in \left( { - 2;1} \right) \Leftrightarrow \left( {f'\left( {3x - 1} \right) + {x^2} - m} \right) \ge 0,\forall x \in \left( { - 2;1} \right)\)
\(f'\left( {3x - 1} \right) + {x^2} \ge m,\forall x \in \left( { - 2;1} \right) \Leftrightarrow m \le \mathop {\min }\limits_{\left( { - 2;1} \right)} \left( {f'\left( {3x - 1} \right) + {x^2}} \right)\)
Đặt \(f'\left( {3x - 1} \right) = g\left( x \right)\) và \({x^2} = h\left( x \right)\)
Quan sát bảng biến thiên ta có:
\(\left\{ \begin{array}{l}f'\left( {3x - 1} \right) \ge - 4 = f'\left( 0 \right),3x - 1 \in \left( { - 7;2} \right)\\h\left( x \right) = {x^2} \ge 0 = h\left( 0 \right),\forall x \in \left( { - 2;1} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}f'\left( {3x - 1} \right) \ge - 4 = f'\left( 0 \right),\forall x \in \left( { - 2;1} \right)\\h\left( x \right) = {x^2} \ge 0 = h\left( 0 \right),\forall x \in \left( { - 2;1} \right)\end{array} \right.\)
\( \Rightarrow f'\left( {3x - 1} \right) + h\left( x \right) \ge - 4 + 0 = - 4,x = 0\)
\( \Rightarrow \mathop {\min }\limits_{\left( { - 2;1} \right)} \left[ {g\left( x \right) + h\left( x \right)} \right] = - 4,x = 0\)
Do đó: \(\mathop {\min }\limits_{\left( { - 2;1} \right)} \left( {f'\left( {3x - 1} \right) + {x^2}} \right) = - 4\)
Vì \(m \in \left( { - 10;10} \right)\) và \(m \le - 4\) nên tổng các giá trị nguyên của m thỏa mãn đề bài là -39
Cách 2:
Xét hàm số \(y = f\left( {3x - 1} \right) + {x^3} - 3mx\)
Ta có: \(y' = 3f'\left( {3x - 1} \right) + 3{x^2} - 3m = 3\left[ {f'\left( {3x - 1} \right) + {x^2} - m} \right]\)
Để hàm số đồng biến trên \(\left( { - 2;1} \right)\) thì:
\(y' \ge 0,\forall x \in \left( { - 2;1} \right) \Leftrightarrow f'\left( {3x - 1} \right) \ge - {x^2} + m,\forall x \in \left( { - 2;1} \right)\)
Đặt \(g\left( x \right) = f'\left( {3x - 1} \right) \ge - {x^2} + m = h\left( x \right),\forall x \in \left( { - 2;1} \right)\)
Đặt \(\left\{ \begin{array}{l}3x - 1 = t\\x = \frac{{t + 1}}{3}\\t \in \left( { - 7;2} \right)\end{array} \right. \Rightarrow f'\left( t \right) \ge h\left( t \right) = - \frac{{{t^2} + 2t + 1}}{9} + m,\forall t \in \left( { - 7;2} \right)\left( * \right)\)
Ta có đồ thị hàm số \(h\left( t \right) = - \frac{{{t^2} + 2t + 1}}{9} + m\) có đỉnh \(I\left( { - 1;m} \right).\)
Vậy \(\left( * \right)\) thỏa mãn khi đồ thị \(h\left( t \right) = - \frac{{{t^2} + 2t + 1}}{9} + m\) nằm dưới đồ thị \(y = f'\left( t \right).\)
Suy ra: \(m \le - 4.\)
Với giả thiết \(m \in \left( { - 10;10} \right),m \in \mathbb{Z} \Rightarrow m \in \left[ { - 9; - 4} \right] \Rightarrow \sum\limits_{m = - 9}^{ - 4} m = - 39.\)
Đáp án B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Số giá trị nguyên của tham số thực \(m\) để hàm số \(y = \frac{{mx - 2}}{{ - 2x + m}}\) nghịch biến trên khoảng \(\left( {\frac{1}{2};\, + \infty } \right)\) là
Câu 3:
Cho hàm số \[y = \frac{{x + m}}{{x + 1}}\] (\[m\] là tham số thực) thoả mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{9}{2}\). Mệnh đề nào dưới đây đúng?
Câu 4:
Cho hàm số \[f\left( x \right) = {x^3} - 3x + m\] ( với m là tham số thực). Biết \[\mathop {\max }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = 5\] . Giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \(\left( {0; + \infty } \right)\)là
Câu 5:
Hàm số \(f(x) = a{x^4} + b{x^3} + c{x^2} + dx + e\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(f\left( {f\left( x \right)} \right) + 1 = 0\) là
Câu 6:
Cho hàm số \(y = f(x) = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số \(g(x) = f({x^3} + f(x))\) là
về câu hỏi!