Câu hỏi:

11/05/2022 6,456

Cho hàm số \(y = f(x) = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số \(g(x) = f({x^3} + f(x))\) là

Cho hàm số y = f(x) = ax^4 + bx^2 + c có đồ thị như hình vẽ bên dưới  Số điểm cực trị của hàm số g(x) = f(x^3 + f(x)) là (ảnh 1)

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

Từ đồ thị ta thấy hàm số trên có phương trình là \(y = {x^4} - 2{x^2}.\) Vậy ta có:

\(f\left( x \right) = {x^4} - 2{x^2}\) và \(f'\left( x \right) = 4{x^3} - 4x\)

\(g'\left( x \right) = \left( {f\left( {{x^3} + f\left( x \right)} \right)} \right)' = \left( {{x^3} + f\left( x \right)} \right)'f'\left( {{x^3} + f\left( x \right)} \right) = \left( {3{x^2} + f'\left( x \right)} \right)f\left( {{x^3} + f\left( x \right)} \right).\)

Suy ra \(g'\left( x \right) = \left( {3{x^2} + f'\left( x \right)} \right)f'\left( {{x^3} + f\left( x \right)} \right) = \left( {3{x^2} + 4{x^3} - 4x} \right)f'\left( {{x^3} + {x^4} - 2{x^2}} \right).\)

\(g'\left( x \right) = 0 \Leftrightarrow \left( {3{x^2} + 4{x^3} - 4x} \right)f'\left( {{x^3} + {x^4} - 2{x^2}} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}4{x^3} + 3{x^2} - 4x = 0\\{x^4} + {x^3} - 2{x^2} = 1\\{x^4} + {x^3} - 2{x^2} = - 1\\{x^4} + {x^3} - 2{x^2} = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4{x^3} + 3{x^2} - 4x = 0\\{x^4} + {x^3} - 2{x^2} - 1 = 0\\{x^4} + {x^3} - 2{x^2} + 1 = 0\\{x^4} + {x^3} - 2{x^2} = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = 0\\x \approx 0,6930\\x \approx - 1,4430\\x \approx 1,21195\\x \approx - 2,0754\\x \approx - 0,6710\\x \approx - 1,9051\\x = 1\\x = - 2\end{array} \right.\)

Phương trình \(g'\left( x \right) = 0\) có đúng 8 nghiệm đơn và 1 nghiệm bội lẻ \(x = 0.\)

Vậy hàm số \(g\left( x \right)\) có 9 điểm cực trị

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình bên. Trong các giá trị \(a\), \(b\), \(c\), \(d\) có bao nhiêu giá trị dương?
Cho hàm số y = ax^3 + bx^2 + cx + d có đồ thị như hình bên. Trong các giá trị a, b, c, d có bao nhiêu giá trị dương? (ảnh 1)

Xem đáp án » 11/05/2022 19,951

Câu 2:

Số giá trị nguyên của tham số thực \(m\) để hàm số \(y = \frac{{mx - 2}}{{ - 2x + m}}\) nghịch biến trên khoảng \(\left( {\frac{1}{2};\, + \infty } \right)\) là

Xem đáp án » 11/05/2022 14,622

Câu 3:

Cho hàm số \[y = \frac{{x + m}}{{x + 1}}\] (\[m\] là tham số thực) thoả mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{9}{2}\). Mệnh đề nào dưới đây đúng?

Xem đáp án » 10/05/2022 11,708

Câu 4:

Cho hàm số \[f\left( x \right) = {x^3} - 3x + m\] ( với m là tham số thực). Biết \[\mathop {\max }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = 5\] . Giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \(\left( {0; + \infty } \right)\)là

Xem đáp án » 11/05/2022 11,000

Câu 5:

Hàm số \(f(x) = a{x^4} + b{x^3} + c{x^2} + dx + e\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(f\left( {f\left( x \right)} \right) + 1 = 0\) là

Hàm số f(x) = ax^4 + bx^3 + cx^2 + dx + e có đồ thị như hình dưới đây. Số nghiệm của phương trình f(f(x)) + 1 = 0 là (ảnh 1)

Xem đáp án » 11/05/2022 7,365

Câu 6:

Cho hàm số \(f\left( x \right)\) có bảng biến thiên của hàm số \(y = f'\left( x \right)\) như hình vẽ bên. Tính tổng các giá trị nguyên của tham số \(m \in \left( { - 10\,;\,10} \right)\) để hàm số \(y = f\left( {3x - 1} \right) + {x^3} - 3mx\) đồng biến trên khoảng \(\left( { - 2\,;\,1} \right)\)?

Cho hàm số f(x) có bảng biến thiên của hàm số y=f'(x) như hình vẽ bên. Tính tổng các giá trị nguyên của tham số  (ảnh 1)

Xem đáp án » 11/05/2022 5,494

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store