Câu hỏi:
11/05/2022 20,956Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C.
Dựa vào xu hướng của đồ thị hàm số ta có \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\)
Tại \(x = 0 \Rightarrow y = d < 0\)
\(y = a{x^3} + b{x^2} + cx + d \Rightarrow y' = 3a{x^2} + 2bx + c.\)
Xét thấy 2 điểm cực trị \({x_1} < 0\) và \({x_2} >0.\)</>
Ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{ - 2b}}{{3a}} >0 \Rightarrow b >0\\{x_1}{x_2} = \frac{c}{{3a}} < 0 \Rightarrow c >0\end{array} \right.\)</>
Vậy có 2 giá trị dương trong 4 giá trị \(a,b,c,d.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Số giá trị nguyên của tham số thực \(m\) để hàm số \(y = \frac{{mx - 2}}{{ - 2x + m}}\) nghịch biến trên khoảng \(\left( {\frac{1}{2};\, + \infty } \right)\) là
Câu 2:
Cho hàm số \[y = \frac{{x + m}}{{x + 1}}\] (\[m\] là tham số thực) thoả mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{9}{2}\). Mệnh đề nào dưới đây đúng?
Câu 3:
Cho hàm số \[f\left( x \right) = {x^3} - 3x + m\] ( với m là tham số thực). Biết \[\mathop {\max }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = 5\] . Giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \(\left( {0; + \infty } \right)\)là
Câu 4:
Hàm số \(f(x) = a{x^4} + b{x^3} + c{x^2} + dx + e\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(f\left( {f\left( x \right)} \right) + 1 = 0\) là
Câu 5:
Cho hàm số \(y = f(x) = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số \(g(x) = f({x^3} + f(x))\) là
Câu 6:
Cho hàm số \(f\left( x \right)\) có bảng biến thiên của hàm số \(y = f'\left( x \right)\) như hình vẽ bên. Tính tổng các giá trị nguyên của tham số \(m \in \left( { - 10\,;\,10} \right)\) để hàm số \(y = f\left( {3x - 1} \right) + {x^3} - 3mx\) đồng biến trên khoảng \(\left( { - 2\,;\,1} \right)\)?
về câu hỏi!