Câu hỏi:
10/05/2022 224
Cho đồ thị của ba hàm số và (a, b, c là ba số dương khác 1 cho trước) được vẽ trong cùng một mặt phẳng tọa độ như hình bên. Chọn khẳng định đúng?
Cho đồ thị của ba hàm số và (a, b, c là ba số dương khác 1 cho trước) được vẽ trong cùng một mặt phẳng tọa độ như hình bên. Chọn khẳng định đúng?

Quảng cáo
Trả lời:
Phương pháp:
- Hàm số đồng biến trên khi và chỉ khi a > 1 và nghịch biến trên khi và chỉ khi 0 < a < 1.
- So sánh:
Cách giải:
Hàm số đồng biến trên nên a > 1.
Hàm số nghịch biến trên nên

Với cùng giá trị ta thấy
Vì Mà nên c > b.
Vậy
Chọn D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
- Tính số các số tự nhiên có 5 chữ số đôi một khác nhau Số phần tử của không gian mẫu
- Gọi A là biến cố: “ số đó có hai chữ số tận cùng không có cùng tính chẵn lẻ”, tìm số cách chọn 2 chữ số tận
cùng, số cách chọn 3 chữ số còn lại và áp dụng quy tắc nhân tìm số phần tử của biến cố A.
- Tính xác suất của biến cố A.
Cách giải:
Gọi số tự nhiên có 5 chữ số khác nhau là
Số các số tự nhiên có 5 chữ số đôi một khác nhau là
Chọn ngẫu nhiên một số thuộc S Số phần tử của không gian mẫu
Gọi A là biến cố: “số đó có hai chữ số tận cùng không có cùng tính chẵn lẻ”.
TH1: d, e không cùng tính chẵn lẻ,
Số cách chọn d, e là cách.
Số cách chọn a, b, c là
TH1 có số thỏa mãn.
TH2: d, e không cùng tính chẵn lẻ, de = 0.
Chọn 1 số lẻ có 5 cách Số cách chọn d, e là 5.2 = 10 cách.
Số cách chọn a, b, c là .
TH2 có số thỏa mãn.
.
Vậy xác suất của biến cố A là
Chọn A.
Lời giải
Phương pháp:
Sử dụng công thức SHTQ của CSN:
Cách giải:
Ta có
Chọn B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.