Câu hỏi:
11/05/2022 21,990
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, AD=2a. Cạnh bên SA vuông góc với đáy, góc giữa SD với đáy bằng . Tính khoảng cách d từ điểm C đến mặt phẳng (SBD) theo a.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, AD=2a. Cạnh bên SA vuông góc với đáy, góc giữa SD với đáy bằng . Tính khoảng cách d từ điểm C đến mặt phẳng (SBD) theo a.
Quảng cáo
Trả lời:
Đáp án A
Xác định và .
Ta có .
Kẻ và kẻ .
Khi đó .
Tam giác vuông BAD, có .
Tam giác vuông SAE, có .
Vậy .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương trình hoành độ giao điểm của đường thẳng và đồ thị hàm số là:
(với ) (1).
Để đường thẳng cắt đồ thị hàm số tại hai điểm phân biệt thì phương trình (1) có 2 nghiệm phân biệt khác -1
.
Vậy thỏa mãn yêu cầu bài toán.
Lời giải
Đáp án B
Mặt cầu (S) có tâm I(1;0;2), bán kính R=3 .
Ta làm theo hai cách.
Ta có: (P): x-2y+2z+7=0 nên .
Do đó mặt phẳng (P) không có điểm chung với mặt cầu (S).
Tất cả các điểm thuộc mặt cầu (S) đều nằm trong miền giới hạn bởi hai mặt phẳng song song với (P) và tiếp xúc với mặt cầu, nên điểm có khoảng cách lớn nhất, nhỏ nhất là các giao điểm của đường thẳng Δ với mặt cầu (S), với (Δ)
là đường thẳng qua I và vuông góc với .
Phương trình đường thẳng Δ:
Gọi .
Ta có nên .
Suy ra hai điểm thỏa mãn .
Khoảng cách từ các điểm đến (P) là
Vậy các điểm cần tìm là .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.