Câu hỏi:

11/05/2022 9,738

Cho mặt cầu S:x12+y2+z22=9. Tìm các điểm M, NS  sao cho khoảng cách từ điểm M đến mặt phẳng (P) là lớn nhất, khoảng cách từ điểm N đến mặt phẳng (P) là nhỏ nhất, với (P): x-2y+2z+7=0  .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Mặt cầu (S) có tâm I(1;0;2), bán kính R=3  .

Ta làm theo hai cách.

Ta có: (P): x-2y+2z+7=0 nên dI;(P)=12.0+2.2+73=4>3=R .

Do đó mặt phẳng (P) không có điểm chung với mặt cầu (S).

Tất cả các điểm thuộc mặt cầu (S)   đều nằm trong miền giới hạn bởi hai mặt phẳng song song với (P) và tiếp xúc với mặt cầu, nên điểm có khoảng cách lớn nhất, nhỏ nhất là các giao điểm của đường thẳng Δ với mặt cầu (S), với (Δ)

 là đường thẳng qua I và vuông góc với .

Phương trình đường thẳng Δ: Δ:x=1+ty=2tz=2+2tt

Gọi .J=ΔS

Ta có JS  nên .

Suy ra hai điểm thỏa mãn J10;2;0, J22;2;4 .

Khoảng cách từ các điểm J1, J2  đến (P) 

Vậy các điểm cần tìm là M2;2;4, N0;2;0 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, AD=2a . Cạnh bên SA vuông góc với đáy, góc giữa SD với đáy bằng 60 độ . Tính khoảng cách d từ điểm C đến mặt phẳng (SBD)  theo a. (ảnh 1)

Xác định 60°=SD,ABCD^=SD,AD^=SDA^  SA=AD.tanSDA^=2a3 .

Ta có dC,(SBD)=dA,(SBD)  .

Kẻ AEBD  và kẻ AKSE .

Khi đó dA,(SBD)=AK .

Tam giác vuông BAD, có AE=AB.ADAB2+AD2=2a5 .

Tam giác vuông SAE, có AK=SA.AESA2+AE2=a32  .

Vậy dC,(SBD)=AK=a32 .

Lời giải

Đáp án D

Phương trình hoành độ giao điểm của đường thẳng y=x2m  và đồ thị hàm số y=x3x+1  là:

 (với x1  ) x22mx+32m=0  (1).

Để đường thẳng  cắt đồ thị hàm số y=x3x+1  tại hai điểm phân biệt thì phương trình (1) có 2 nghiệm phân biệt khác -1

Δ'>0122m.1+32m0m2+2m3>040m>1m<3.

Vậy m>1m<3  thỏa mãn yêu cầu bài toán.

Câu 5

Đồ thị trong hình vẽ bên dưới là của đồ thị hàm số nào sau đây?
Đồ thị trong hình vẽ bên dưới là của đồ thị hàm số nào sau đây? (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP