Câu hỏi:

12/05/2022 231

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho phương trình 4xm2x+2m227=0 có hai nghiệm phân biệt. Hỏi S có bao nhiêu phần tử?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

- Đặt ẩn phụ t=2x>0, đưa phương trình về phương trình bậc hai ẩn t.

- Để phương trình ban đầu có hai nghiệm phân biệt thì phương trình bậc hai ẩn t có 2 nghiệm dương phân biệt.

- Sử dụng định lí Vi-ét

Cách giải:

Đặt t=2x>0, phương trình đã cho trở thành t22mt+2m227=0*.

Để phương trình ban đầu có hai nghiệm phân biệt thì phương trình (*) có 2 nghiệm dương phân biệt.

Δ'=m22m2+27>0S=2m>0P=2m227>033<m<33m>0m>362m<362362<m<33.

Mà S là tập hợp tất cả các giá trị nguyên của tham số m nên S=4;5.

Vậy S có 2 phần tử.

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi S là tập hợp tất cả các số tự nhiên có 5 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc S xác suất để số đó có hai chữ số tận cùng không có cùng tính chẵn lẻ bằng:

Xem đáp án » 12/05/2022 10,061

Câu 2:

Số nghiệm nguyên của bất phương trình ln2x+11+lnx1 là:

Xem đáp án » 09/05/2022 4,898

Câu 3:

Trong không gian Oxyz, mặt cầu có tâm I(4; -4; 2) và đi qua gốc tọa độ có phương trình là:

Xem đáp án » 09/05/2022 3,386

Câu 4:

Có bao nhiêu giá trị nguyên của m thuộc đoạn [-10; 10] để hàm số y=2021x+22021x+m đồng biến trên khoảng 0;+?

Xem đáp án » 12/05/2022 2,546

Câu 5:

Trong không gian Oxyz, cho mặt cầu (S) có phương trình x2+y2+z24x+2y6z2=0. Tọa độ tâm I và bán kính R của mặt cầu là:

Xem đáp án » 12/05/2022 2,101

Câu 6:

Giá trị nhỏ nhất của hàm số fx=x4+12x2+1 trên đoạn [1; 2] bằng: 

Xem đáp án » 12/05/2022 1,943

Câu 7:

Diện tích hình phẳng (H) giới hạn bởi các đường y=2x, y=3x1, x=3 là:

Xem đáp án » 12/05/2022 1,867

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store