Câu hỏi:

12/05/2022 256

Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, AB=a, SAB=SCB=900, cạnh bên SA tạo với mặt phẳng đáy góc 600. Tính diện tích S của mặt cầu ngoại tiếp hình chóp S.ABCD. 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

- Gọi I là trung điểm SB. Chứng minh I là tâm mặt cầu ngoại tiếp chóp S.ABC.

- Xác định góc giữa SA và (ABC).

- Đặt SB = x (x > a) tính SA, SM, SH theo x.

- Tính SΔSBM=ppSBpBMpSM với p là nửa chu vi tam giác SBM.

- Giải phương trình ppSBpBMpSM=12SH.BM tìm x theo a và suy ra bán kính mặt cầu ngoại tiếp khối chóp.

- Diện tích mặt cầu bán kính R là S=4πR2.

Cách giải:

Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, AB = a (ảnh 1)

Gọi I là trung điểm của SB.

SAB=SCB=900 nên IA=IC=12SB=IS=IBI là tâm mặt cầu ngoại tiếp chóp S.ABC.

Gọi M là trung điểm của AC ta có ΔABC vuông cân tại BBMAC.

Lại có ΔSAB=ΔSCB (cạnh huyền – cạnh góc vuông) SA=SC.

ΔSAC vuông tại SSMAC,

ACSMB.

Trong (SBM) kẻ SHBM ta có: SHBMSHACSHABC.

HA là hình chiếu vuông góc của SA lên ABCSA;ABC=SA;HA=SAH=600,

Đặt SB = x (x > a) ta có SA=SB2AB2=x2a2.

ΔABC vuông cân tại B có AB = a nên AC=a2,BM=a22.

SM=SA2AM2=x2a2a22=x23a22.

Gọi p là nửa chu vi tam giác SBM ta có p=SB+BM+SM2=x+a22+x23a222.

Xét tam giác vuông SAH ta có SH=SA.sin600=x2a2.32

SΔSBM=ppSBpBMpSM=12SH.BM

ppSBpBMpSM=12.x2a2.32.a22

8ppSBpBMpSM=6.x2a2

64ppSBpBMpSM=6x2a2

x=a5

 Bán kính mặt cầu ngoại tiếp khối chóp là R=12SB=a52.

Vậy diện tích mặt cầu ngoại tiếp khối chóp S=4πR2=4π.52a2=5πa2.

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp:

- Tính số các số tự nhiên có 5 chữ số đôi một khác nhau  Số phần tử của không gian mẫu nΩ.

- Gọi A là biến cố: “ số đó có hai chữ số tận cùng không có cùng tính chẵn lẻ”, tìm số cách chọn 2 chữ số tận
cùng, số cách chọn 3 chữ số còn lại và áp dụng quy tắc nhân tìm số phần tử của biến cố A.

- Tính xác suất của biến cố A.

Cách giải:

Gọi số tự nhiên có 5 chữ số khác nhau là abcde¯.

Số các số tự nhiên có 5 chữ số đôi một khác nhau là A105A94=27216.

Chọn ngẫu nhiên một số thuộc S  Số phần tử của không gian mẫu nΩ=C272161=27216.

Gọi A là biến cố: “số đó có hai chữ số tận cùng không có cùng tính chẵn lẻ”.

TH1: d, e không cùng tính chẵn lẻ, de0.

 Số cách chọn d, e 4.5.2!=40 cách.

Số cách chọn a, b, c là A83A72=294.

 TH1 có 40.294=11760 số thỏa mãn.

TH2: d, e không cùng tính chẵn lẻ, de = 0.

Chọn 1 số lẻ có 5 cách  Số cách chọn d, e là 5.2 = 10 cách.

Số cách chọn a, b, c A83=336.

 TH2 có 10.336=3360 số thỏa mãn.

nA=11760+3360=112096.

Vậy xác suất của biến cố A là PA=nAnΩ=1209627216=49.

Chọn A.

Câu 2

Lời giải

Phương pháp:

Sử dụng công thức SHTQ của CSN: un=u1qn1.

Cách giải:

Ta có u2=u1qq=u2u1=62=3.

Chọn B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP