Câu hỏi:
12/05/2022 186Cho hai đường thẳng x'x, y'y chéo nhau và vuông góc với nhau. Trên x'x lấy cố định điểm A, trên y'y lấy cố định điểm B sao cho AB cùng vuông góc với Ax, By và AB = 2020 cm. Gọi CD là hai điểm lần lượt di chuyển trên hai tia Ax, By sao cho AC + BD = AD. Hỏi bán kính R của mặt cầu (S) ngoại tiếp tứ diện ABCD có giá trị nhỏ nhất thuộc khoảng nào sau đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp:
- Đặt
- Sử dụng định lí Pytago tìm xy.
- Gọi I là trung điểm của CD. Chứng minh I là tâm mặt cầu ngoại tiếp tứ diện ABCD.
- Áp dụng BĐT Cô-si.
Cách giải:
Ta có:
Đặt
Áp dụng định lí Pytago ta có:
Gọi I là trung điểm của CD.
Ta có:
Vì là các tam giác vuông tại A, B nên là tâm mặt cầu ngoại tiếp khối chóp ABCD bán kính
Ta có
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi S là tập hợp tất cả các số tự nhiên có 5 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc S xác suất để số đó có hai chữ số tận cùng không có cùng tính chẵn lẻ bằng:
Câu 3:
Trong không gian Oxyz, mặt cầu có tâm I(4; -4; 2) và đi qua gốc tọa độ có phương trình là:
Câu 4:
Có bao nhiêu giá trị nguyên của m thuộc đoạn [-10; 10] để hàm số đồng biến trên khoảng
Câu 5:
về câu hỏi!