Câu hỏi:
12/05/2022 197Cho hai đường thẳng x'x, y'y chéo nhau và vuông góc với nhau. Trên x'x lấy cố định điểm A, trên y'y lấy cố định điểm B sao cho AB cùng vuông góc với Ax, By và AB = 2020 cm. Gọi CD là hai điểm lần lượt di chuyển trên hai tia Ax, By sao cho AC + BD = AD. Hỏi bán kính R của mặt cầu (S) ngoại tiếp tứ diện ABCD có giá trị nhỏ nhất thuộc khoảng nào sau đây?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp:
- Đặt
- Sử dụng định lí Pytago tìm xy.
- Gọi I là trung điểm của CD. Chứng minh I là tâm mặt cầu ngoại tiếp tứ diện ABCD.
- Áp dụng BĐT Cô-si.
Cách giải:
Ta có:
Đặt
Áp dụng định lí Pytago ta có:
Gọi I là trung điểm của CD.
Ta có:
Vì là các tam giác vuông tại A, B nên là tâm mặt cầu ngoại tiếp khối chóp ABCD bán kính
Ta có
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi S là tập hợp tất cả các số tự nhiên có 5 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc S xác suất để số đó có hai chữ số tận cùng không có cùng tính chẵn lẻ bằng:
Câu 3:
Trong không gian Oxyz, mặt cầu có tâm I(4; -4; 2) và đi qua gốc tọa độ có phương trình là:
Câu 4:
Có bao nhiêu giá trị nguyên của m thuộc đoạn [-10; 10] để hàm số đồng biến trên khoảng
Câu 5:
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
44 bài tập Đạo hàm và khảo sát hàm số có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 23)
về câu hỏi!