Câu hỏi:

13/05/2022 328 Lưu

Trong không gian với hệ trục tọa độ Oxyz, mặt cầu tâm I(2;1;1)   qua điểm A(0;1;0)  

A.x2+(y+1)2+z2=9 .
B. (x2)2+(y+1)2+(z+1)2=9 .
C.(x+2)2+(y1)2+(z1)2=9 .
D.x2+(y1)2+z2=9 .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Ta có IA=(2;2;1)IA=22+(2)2+(1)2=3

Do mặt cầu tâm I(2;1;1)  qua điểm A(0;1;0)  nên bán kính là R=IA=3 .

Vậy mặt cầu cần tìm có tâm I(2;1;1)  và bán kính R=3  nên phương trình là: (x+2)2+(y1)2+(z1)2=9.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Gọi M là trung điểm của BC, suy ra AMBC .

Ta có AMBCBCSABC(SAM)BCSM .

Do đó (SBC),(ABC)¯=(SM,AM)^=SMA^

Tam giác ABC đều cạnh a, suy ra trung tuyến AM=a32  .

Tam giác vuông SAM, có sinSMA^=SASM=SASA2+AM2=255 .

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a . Cạnh bên SA=a căn 3  và vuông góc với mặt đáy  . Gọi   là góc giữa hai mặt phẳng  (SBC) và (ABC) . Mệnh đề nào sau đây đúng? (ảnh 1)

Câu 2

A. Đồ thị hàm số có đúng hai tiệm cận ngang là y=0,y=5  và không có tiệm cận đứng.         
B. Đồ thị hàm số có đúng hai tiệm cận ngang là y=0, y=5 và chỉ có tiệm cận đứng là x=1.
C. Đồ thị hàm số chỉ có tiệm cận ngang là y=0 và chỉ có tiệm cận đứng là x=1.

D. Đồ thị hàm số chỉ có tiệm cận ngang là y=5 và chỉ có tiệm cận đứng là x=1.

Lời giải

Đáp án B

Ta có limxf(x)=0y=0  là tiệm cận ngang của đồ thị hàm số.

limx+f(x)=5y=5 là tiệm cận ngang của đồ thị hàm số.

limx1f(x)=x=1 là tiệm cận đứng của đồ thị hàm số.

Câu 3

A. (;1) .
B. (;1)(1;+) .        
C. (;0](1;+) .
D. [0;+) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP