Câu hỏi:

16/05/2022 891 Lưu

Cho hai số thực dương x,y thỏa mãn log2x+x(x+y)log2(6y)+6x . Giá trị nhỏ nhất của biểu thức P=3x+2y+6x+8y  bằng

A. 593 .
B. 19
C. 533 .
D. 8+62 .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Điều kiện: x>00<y<6 .

Bất phương trình tương đương với: log2x2+x2log2[x(6y)]+x(6y)(*) .

Xét hàm số f(t)=log2t+t  (với t>0 ).

Ta có f'(t)=1tln2+1>0,t>0  nên hàm số f(t)=log2t+t  đồng biến trên khoảng (0;+)  .

Do đó (*)fx2f(x(6y))x2x(6y)x6yx+y6(  **) (do x>0).

Áp dụng BĐT Côsi cho các cặp số dương và bất đẳng thức P=3x+2y+6x+8y=32(x+y)+3x2+6x+y2+8y326+23x26x+2y28y=19  ta có:

Đằng thức xảy ra khi và chỉ khi x+y=63x2=6xy2=8y  .x=2y=4

Vậy Pmin=19 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Gọi M là trung điểm của BC, suy ra AMBC .

Ta có AMBCBCSABC(SAM)BCSM .

Do đó (SBC),(ABC)¯=(SM,AM)^=SMA^

Tam giác ABC đều cạnh a, suy ra trung tuyến AM=a32  .

Tam giác vuông SAM, có sinSMA^=SASM=SASA2+AM2=255 .

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a . Cạnh bên SA=a căn 3  và vuông góc với mặt đáy  . Gọi   là góc giữa hai mặt phẳng  (SBC) và (ABC) . Mệnh đề nào sau đây đúng? (ảnh 1)

Câu 2

A. Đồ thị hàm số có đúng hai tiệm cận ngang là y=0,y=5  và không có tiệm cận đứng.         
B. Đồ thị hàm số có đúng hai tiệm cận ngang là y=0, y=5 và chỉ có tiệm cận đứng là x=1.
C. Đồ thị hàm số chỉ có tiệm cận ngang là y=0 và chỉ có tiệm cận đứng là x=1.

D. Đồ thị hàm số chỉ có tiệm cận ngang là y=5 và chỉ có tiệm cận đứng là x=1.

Lời giải

Đáp án B

Ta có limxf(x)=0y=0  là tiệm cận ngang của đồ thị hàm số.

limx+f(x)=5y=5 là tiệm cận ngang của đồ thị hàm số.

limx1f(x)=x=1 là tiệm cận đứng của đồ thị hàm số.

Câu 3

A. (;1) .
B. (;1)(1;+) .        
C. (;0](1;+) .
D. [0;+) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP