Câu hỏi:
24/05/2022 555
Cho biểu thức . Hỏi có tất cả bao nhiêu giá trị nguyên âm của \[x\] thỏa mãn bất phương trình \(f\left( x \right) < 1\)?
Quảng cáo
Trả lời:
Phương pháp giải:
+ Tìm TXĐ của \(f\left( x \right)\).
+ Giải bất phương trình \(f\left( x \right) < 1\).
Giải chi tiết:
TXĐ: \(D = \mathbb{R}\backslash \left\{ { \pm 1} \right\}\)
Theo bài ra, ta có: \(f\left( x \right) < 1\)
\( \Leftrightarrow \frac{{\left( {x - 3} \right)\left( {x + 2} \right)}}{{{x^2} - 1}} < 1\)
\( \Leftrightarrow \frac{{\left( {x - 3} \right)\left( {x + 2} \right)}}{{{x^2} - 1}} - 1 < 0\)
\( \Leftrightarrow \frac{{{x^2} - x - 6 - {x^2} - 1}}{{{x^2} - 1}} < 0\)
\( \Leftrightarrow \frac{{ - x - 7}}{{{x^2} - 1}} < 0\)
Ta có bảng xét dấu:
Mà \(x\) là số nguyên âm và nên .
Vậy có 5 giá trị nguyên âm của \(x\) thỏa mãn điều kiện.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(\frac{{a\sqrt 6 }}{6}\)
Phương pháp giải:
- Gọi M là trung điểm của BC, trong (SOM) kẻ \(OH \bot SM{\mkern 1mu} {\mkern 1mu} \left( {H \in SM} \right)\), chứng minh \(OH \bot \left( {SBC} \right)\).
- Áp dụng định lí Pytago và hệ thức lượng trong tam giác vuông tính khoảng cách.
Giải chi tiết:
Gọi M là trung điểm của BC, suy ra OM là đường trung bình của tam giác ABC.
\( \Rightarrow OM\parallel AB\), mà \(AB \bot BC\)\( \Rightarrow OM \bot BC\) và \(OM = \frac{1}{2}AB = \frac{a}{2}\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot OM}\\{BC \bot SO{\mkern 1mu} {\mkern 1mu} \left( {SO \bot \left( {ABCD} \right)} \right)}\end{array}} \right.\)\( \Rightarrow BC \bot \left( {SOM} \right)\)
Trong (SOM) kẻ \(OH \bot SM{\mkern 1mu} {\mkern 1mu} \left( {O \in SM} \right)\), ta có:
\(\left\{ {\begin{array}{*{20}{l}}{BC \bot \left( {SOM} \right) \Rightarrow BC \bot OH}\\{OH \bot SM}\end{array}} \right.\)\( \Rightarrow OH \bot \left( {SBC} \right)\)
\( \Rightarrow d\left( {O;\left( {SBC} \right)} \right) = OH\).
Tam giác SBC đều cạnh a nên \(SM = \frac{{a\sqrt 3 }}{2}\).
Áp dụng định lí Pytago trong tam giác vuông SOM có: .
Áp dụng hệ thức lượng trong tam giác vuông SOM có: \(OH = \frac{{SO.OM}}{{SM}} = \frac{{\frac{a}{{\sqrt 2 }}.\frac{a}{2}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{a\sqrt 6 }}{6}\).
Vậy \(d\left( {O;\left( {SBC} \right)} \right) = \frac{{a\sqrt 6 }}{6}\).
Lời giải
Giải chi tiết:
PTHH: M2Om + mH2SO4 ⟶ M2(SO4)m + mH2O
Giả sử có 1 mol M2Om phản ứng thì số gam dung dịch H2SO4 10% là 980m (g)
Khối lượng dung dịch thu được là: (2M + 16m) + 980m = 2M + 996m (g)
Số gam muối là: 2M + 96m (g)
Ta có C% = \(\frac{{2M + 96m}}{{2M + 996m}}.100\% \) = 12,9% ⟹ M = 18,65m
Nghiệm phù hợp là m = 3 và M = 56 (Fe).
Vậy oxit là Fe2O3.
Fe2O3 + 3H2SO4 ⟶ Fe2(SO4)3 + 3H2O
nFe2O3 = \(\frac{{3,2}}{{160}}\) = 0,02 mol
Vì hiệu suất là 70% nên số mol Fe2(SO4)3 tham gia kết tinh là: 0,02.70% = 0,014 mol
Nhận thấy số gam Fe2(SO4)3 = 0,014.400 = 5,6 gam < 7,868 gam nên tinh thể là muối ngậm nước.
Đặt CTHH của muối tinh thể là Fe2(SO4)3.nH2O.
Ta có: 0,014.(400 + 18n) = 7,868 ⟹ n = 9.
Công thức của tinh thể là Fe2(SO4)3.9H2O.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.