Câu hỏi:

24/05/2022 557 Lưu

Gọi \(\left( H \right)\) là hình phẳng giới hạn bởi các đồ thị \(y = {x^2} - 2x,y = 0\) trong mặt phẳng \(Oxy\). Quay hình \(\left( H \right)\) quanh trục hoành ta được một khối tròn xoay có thể tích bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

Cho hai hàm số \(y = f\left( x \right)\)\(y = g\left( x \right)\) liên tục trên [a; b]. Khi đó thể tích vật thể tròn xoay giới hạn bởi hai đồ thị số \(y = f\left( x \right)\), \(y = g\left( x \right)\) và hai đường thẳng \(x = a;y = b\) khi quay quanh trục Ox là:

\(V = \pi \int_a^b {\left| {{f^2}(x) - {g^2}(x)} \right|dx} \).

Giải chi tiết:

Giải phương trình hoành độ giao điểm: \({x^2} - 2x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 2}\end{array}} \right.\)

Quay hình \(\left( H \right)\) quanh trục hoành ta được một khối tròn xoay có thể tích bằng \(V = \pi \int\limits_0^2 {{{\left( {{x^2} - 2x} \right)}^2}dx} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(\frac{{a\sqrt 6 }}{6}\)

Phương pháp giải:

- Gọi M là trung điểm của BC, trong (SOM) kẻ \(OH \bot SM{\mkern 1mu} {\mkern 1mu} \left( {H \in SM} \right)\), chứng minh \(OH \bot \left( {SBC} \right)\).

- Áp dụng định lí Pytago và hệ thức lượng trong tam giác vuông tính khoảng cách.

Giải chi tiết:

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy và cạnh bên bằng a, gọi O là tâm của đáy ABCD. Khoảng cách từ O đến mặt phẳng (ảnh 1)

Gọi M là trung điểm của BC, suy ra OM là đường trung bình của tam giác ABC.

\( \Rightarrow OM\parallel AB\), mà \(AB \bot BC\)\( \Rightarrow OM \bot BC\)\(OM = \frac{1}{2}AB = \frac{a}{2}\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot OM}\\{BC \bot SO{\mkern 1mu} {\mkern 1mu} \left( {SO \bot \left( {ABCD} \right)} \right)}\end{array}} \right.\)\( \Rightarrow BC \bot \left( {SOM} \right)\)

Trong (SOM) kẻ \(OH \bot SM{\mkern 1mu} {\mkern 1mu} \left( {O \in SM} \right)\), ta có:

\(\left\{ {\begin{array}{*{20}{l}}{BC \bot \left( {SOM} \right) \Rightarrow BC \bot OH}\\{OH \bot SM}\end{array}} \right.\)\( \Rightarrow OH \bot \left( {SBC} \right)\)

\( \Rightarrow d\left( {O;\left( {SBC} \right)} \right) = OH\).

Tam giác SBC đều cạnh a nên \(SM = \frac{{a\sqrt 3 }}{2}\).

Áp dụng định lí Pytago trong tam giác vuông SOM có: SO=SM2-OM2=3a24-a24 =a2.

Áp dụng hệ thức lượng trong tam giác vuông SOM có: \(OH = \frac{{SO.OM}}{{SM}} = \frac{{\frac{a}{{\sqrt 2 }}.\frac{a}{2}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{a\sqrt 6 }}{6}\).

Vậy \(d\left( {O;\left( {SBC} \right)} \right) = \frac{{a\sqrt 6 }}{6}\).

Lời giải

Giải chi tiết:

PTHH:  M2Om  +  mH2SO4    M2(SO4)m  +  mH2O

Giả sử có 1 mol M2Om phản ứng thì số gam dung dịch H2SO4 10% là 980m (g)

Khối lượng dung dịch thu được là: (2M + 16m) + 980m = 2M + 996m (g)

Số gam muối là: 2M + 96m (g)

Ta có C% = \(\frac{{2M + 96m}}{{2M + 996m}}.100\% \) = 12,9% M = 18,65m

Nghiệm phù hợp là m = 3 và M = 56 (Fe).

Vậy oxit là Fe2O3.

        Fe2O3  +  3H2SO4    Fe2(SO4)3  +  3H2O

nFe2O3 = \(\frac{{3,2}}{{160}}\) = 0,02 mol

Vì hiệu suất là 70% nên số mol Fe2(SO4)3 tham gia kết tinh là: 0,02.70% = 0,014 mol

Nhận thấy số gam Fe2(SO4)3 = 0,014.400 = 5,6 gam < 7,868 gam nên tinh thể là muối ngậm nước.

Đặt CTHH của muối tinh thể là Fe2(SO4)3.nH2O.

Ta có: 0,014.(400 + 18n) = 7,868 n = 9.

Công thức của tinh thể là Fe2(SO4)3.9H2O.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP