Câu hỏi:
24/05/2022 863Quảng cáo
Trả lời:
Phương pháp giải:
- Áp dụng công thức tính khoảng cách hai điểm trong không gian.
- Thay các khoảng cách vào giả thiết rồi đưa phương trình về phương trình mặt cầu.
Giải chi tiết:
Ta có \(A\left( {1;0;0} \right),B\left( {2;3;0} \right),C\left( {0;0;3} \right);M\left( {x;y;z} \right)\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{M{A^2} = {{\left( {x - 1} \right)}^2} + {y^2} + {z^2}}\\{M{B^2} = {{\left( {x - 2} \right)}^2} + {{\left( {y - 3} \right)}^2} + {z^2}}\\{M{C^2} = {x^2} + {y^2}{{\left( {z - 3} \right)}^2}}\end{array}} \right.\)
\( \Rightarrow M{A^2} + M{B^2} + M{C^2} = 23\)
\( \Rightarrow {\left( {x - 1} \right)^2} + {y^2} + {z^2} + {\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {z^2} + {x^2} + {y^2} + {\left( {z - 3} \right)^2} = 23\)
\( \Leftrightarrow 3\left( {{x^2} + {y^2} + {z^2}} \right) - 6x - 6y - 6z = 0\)
\( \Leftrightarrow {x^2} + {y^2} + {z^2} - 2\left( {x + y + z} \right) = 0\)
\( \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 3\)
\( \Rightarrow R = \sqrt 3 \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Một chất điểm chuyển động với phương trình trong đó , t được tính bằng giây (s) và s được tính bằng mét (m). Vận tốc của chất điểm tại thời điểm t = 3(s) bằng
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận