Câu hỏi:
24/05/2022 2,162Quảng cáo
Trả lời:
Phương pháp giải:
- Tính đạo hàm của hàm số \(y = f\left( {4 - x} \right) + 1\).
- Giải phương trình \(y' = 0\).
- Lập BBT hàm số \(y = f\left( {4 - x} \right) + 1\) và kết luận điểm cực đại của hàm số.
Giải chi tiết:
Ta có:
.
Ta có BBT hàm số \(y = f\left( {4 - x} \right) + 1\) như sau:
Dựa vào BBT ta có \({x_{CD}} = 5\)\( \Rightarrow {y_{CD}} = f\left( { - 1} \right) + 1 = 3 + 1 = 4\).
Vậy điểm cực đại của đồ thị hàm số \(y = f\left( {4 - x} \right) + 1\) là \(\left( {5;4} \right).\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Một chất điểm chuyển động với phương trình trong đó , t được tính bằng giây (s) và s được tính bằng mét (m). Vận tốc của chất điểm tại thời điểm t = 3(s) bằng
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận