Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).
Quảng cáo
Trả lời:
Phương pháp giải:
- Tìm ĐKXĐ của phương trình.
- Bình phương hai vế, đặt ẩn phụ \[t = \sqrt { - {x^2} + 9x} \], tìm điều kiện của \(t\).
- Sử dụng định lí Vi-ét tìm điều kiện để phương trình có nghiệm \(t\) thỏa mãn điều kiện tìm được ở trên.
Giải chi tiết:
ĐKXĐ: \(\left\{ {\begin{array}{*{20}{l}}{x \ge 0}\\{9 - x \ge 0}\\{ - {x^2} + 9x + m \ge 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 \le x \le 9}\\{ - {x^2} + 9x + m \ge 0}\end{array}} \right.\)
Ta có
Ta có:
Đặt \(t = \sqrt { - {x^2} + 9x} \)
Khi đó phương trình (*) trở thành \({t^2} - 2t + m - 9 = 0\) có nghiệm .
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\Delta ' \ge 0}\\{0 \le {t_1} + {t_2} \le 9}\\{{t_1}{t_2} \ge 0}\\{\left( {{t_1} - \frac{9}{2}} \right)\left( {{t_2} - \frac{9}{2}} \right) \ge 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 - m + 9 \ge 0}\\{0 \le 2 \le 9{\mkern 1mu} {\mkern 1mu} \left( {luon{\mkern 1mu} {\mkern 1mu} dung} \right)}\\{m - 9 \ge 0}\\{m - 9 - \frac{9}{2}.2 + \frac{{81}}{4} \ge 0}\end{array}} \right.\)
Kết hợp điều kiện (1) ta có \(m \in \left[ {9;10} \right]\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 7:
Một chất điểm chuyển động với phương trình trong đó , t được tính bằng giây (s) và s được tính bằng mét (m). Vận tốc của chất điểm tại thời điểm t = 3(s) bằng
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Khoa học tự nhiên - Định luật khúc xạ ánh sáng
về câu hỏi!