Câu hỏi:

24/05/2022 1,265

Tìm \(m\) để phương trình sau có nghiệm x +9-x =-x2+9x+m.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Tìm ĐKXĐ của phương trình.

- Bình phương hai vế, đặt ẩn phụ \[t = \sqrt { - {x^2} + 9x} \], tìm điều kiện của \(t\).

- Sử dụng định lí Vi-ét tìm điều kiện để phương trình có nghiệm \(t\) thỏa mãn điều kiện tìm được ở trên.

Giải chi tiết:

ĐKXĐ: \(\left\{ {\begin{array}{*{20}{l}}{x \ge 0}\\{9 - x \ge 0}\\{ - {x^2} + 9x + m \ge 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 \le x \le 9}\\{ - {x^2} + 9x + m \ge 0}\end{array}} \right.\)

Ta có -x2+9x+m0 -x2+9x -m

 -x2+9x-m

Ta có: x +9-x =-x2+9x+m

(x +9-x)2= -x2+9x+m

x+9-x+2-x2+9x = -x2+9x+m

2-x2+9x +9= -x2+9x+m

(-x2+9x)-2-x2+9x +m-9=0(*)

Đặt \(t = \sqrt { - {x^2} + 9x} \)0t8140t92

Khi đó phương trình (*) trở thành \({t^2} - 2t + m - 9 = 0\) có nghiệm t[0;92].

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\Delta ' \ge 0}\\{0 \le {t_1} + {t_2} \le 9}\\{{t_1}{t_2} \ge 0}\\{\left( {{t_1} - \frac{9}{2}} \right)\left( {{t_2} - \frac{9}{2}} \right) \ge 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 - m + 9 \ge 0}\\{0 \le 2 \le 9{\mkern 1mu} {\mkern 1mu} \left( {luon{\mkern 1mu} {\mkern 1mu} dung} \right)}\\{m - 9 \ge 0}\\{m - 9 - \frac{9}{2}.2 + \frac{{81}}{4} \ge 0}\end{array}} \right.\)m10m9m -949m10

Kết hợp điều kiện (1) ta có \(m \in \left[ {9;10} \right]\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(\frac{{a\sqrt 6 }}{6}\)

Phương pháp giải:

- Gọi M là trung điểm của BC, trong (SOM) kẻ \(OH \bot SM{\mkern 1mu} {\mkern 1mu} \left( {H \in SM} \right)\), chứng minh \(OH \bot \left( {SBC} \right)\).

- Áp dụng định lí Pytago và hệ thức lượng trong tam giác vuông tính khoảng cách.

Giải chi tiết:

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy và cạnh bên bằng a, gọi O là tâm của đáy ABCD. Khoảng cách từ O đến mặt phẳng (ảnh 1)

Gọi M là trung điểm của BC, suy ra OM là đường trung bình của tam giác ABC.

\( \Rightarrow OM\parallel AB\), mà \(AB \bot BC\)\( \Rightarrow OM \bot BC\)\(OM = \frac{1}{2}AB = \frac{a}{2}\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot OM}\\{BC \bot SO{\mkern 1mu} {\mkern 1mu} \left( {SO \bot \left( {ABCD} \right)} \right)}\end{array}} \right.\)\( \Rightarrow BC \bot \left( {SOM} \right)\)

Trong (SOM) kẻ \(OH \bot SM{\mkern 1mu} {\mkern 1mu} \left( {O \in SM} \right)\), ta có:

\(\left\{ {\begin{array}{*{20}{l}}{BC \bot \left( {SOM} \right) \Rightarrow BC \bot OH}\\{OH \bot SM}\end{array}} \right.\)\( \Rightarrow OH \bot \left( {SBC} \right)\)

\( \Rightarrow d\left( {O;\left( {SBC} \right)} \right) = OH\).

Tam giác SBC đều cạnh a nên \(SM = \frac{{a\sqrt 3 }}{2}\).

Áp dụng định lí Pytago trong tam giác vuông SOM có: SO=SM2-OM2=3a24-a24 =a2.

Áp dụng hệ thức lượng trong tam giác vuông SOM có: \(OH = \frac{{SO.OM}}{{SM}} = \frac{{\frac{a}{{\sqrt 2 }}.\frac{a}{2}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{a\sqrt 6 }}{6}\).

Vậy \(d\left( {O;\left( {SBC} \right)} \right) = \frac{{a\sqrt 6 }}{6}\).

Lời giải

Phương pháp giải:

CSC \(\left( {{u_n}} \right)\)có tổng \(n\) số hạng đầu: \({S_n} = {u_1} + {u_2} + ... + {u_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\)

Giải chi tiết:

Tổng số viên gạch: \(S = 1 + 2 + ... + 500 = \frac{{500.\left( {1 + 500} \right)}}{2} = 125250\).

Câu 4

Căn cứ vào Atlat Địa lí Việt Nam trang 15, nhận xét nào sau đây không đúng về dân số phân theo thành thị và nông thôn ở nước ta?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay