Câu hỏi:
24/05/2022 3,443Quảng cáo
Trả lời:
Phương pháp giải:
- Xác định thiết diện của hình lập phương cắt bởi \[\left( {CMK} \right)\].
- Phân chia và lắp ghép các khối đa diện.
Giải chi tiết:
Trong \(\left( {BCC'B'} \right)\) kéo dài \(CM\) cắt \(B'C'\) tại \(E\), trong \(\left( {CDD'C'} \right)\) kéo dài \(CK\) cắt \(C'D'\) tại \(F\).
Trong \(\left( {A'B'C'D'} \right)\) nối \(EF\) cắt \(A'B',{\mkern 1mu} {\mkern 1mu} A'D'\) lần lượt tại \(G,{\mkern 1mu} {\mkern 1mu} H\).
Khi đó thiết diện của khối lập phương cắt bởi \[\left( {CMK} \right)\] là ngũ giác \[CMGHK\] và \[{V_1} = {V_{C.C'EF}} - {V_{M.B'EG}} - {V_{K.D'HF}}\]
Áp dụng định lí Ta-lét ta có: \[\frac{{EB'}}{{EC'}} = \frac{{B'M}}{{CC'}} = \frac{1}{3}\]
\[ \Rightarrow EB' = \frac{1}{3}EC' \Rightarrow EB' = \frac{1}{2}B'C' = \frac{a}{2}\].
\[\frac{{FD'}}{{FC'}} = \frac{{D'K}}{{CC'}} = \frac{1}{2}\], \[ \Rightarrow D'\] là trung điểm của \[C'F\] nên \(C'F = 2a,{\mkern 1mu} {\mkern 1mu} D'F = a\).
\(\frac{{B'G}}{{C'F}} = \frac{{EB'}}{{EC'}} = \frac{1}{3}\)\( \Rightarrow B'G = \frac{1}{3}C'F = \frac{{2a}}{3}\)\( \Rightarrow A'G = A'B' - B'G = \frac{a}{3}\).
Ta có \(\frac{{EB'}}{{EC'}} = \frac{1}{3} \Rightarrow \frac{{B'C'}}{{EC'}} = \frac{2}{3} \Rightarrow EC' = \frac{{3a}}{2}\).
\(\frac{{HD'}}{{EC'}} = \frac{{FD'}}{{FC'}} = \frac{1}{2} \Rightarrow HD' = \frac{1}{2}EC' = \frac{{3a}}{4}\)\( \Rightarrow A'H = A'D' - HD' = \frac{a}{4}\).
Khi đó ta có:
\({S_{C'EF}} = \frac{1}{2}C'E.C'F = \frac{1}{2}.\frac{{3a}}{2}.2a = \frac{{3{a^2}}}{2}\)\( \Rightarrow {V_{C.C'EF}} = \frac{1}{3}CC'.{S_{C'EE}} = \frac{1}{3}.a.\frac{{3{a^2}}}{2} = \frac{{{a^3}}}{2}\)
\({S_{B'EG}} = \frac{1}{2}B'E.B'G = \frac{1}{2}.\frac{a}{2}.\frac{{2a}}{3} = \frac{{{a^2}}}{6}\)\( \Rightarrow {V_{M.B'EG}} = \frac{1}{3}MB'.{S_{B'EG}} = \frac{1}{3}.\frac{a}{3}.\frac{{{a^2}}}{6} = \frac{{{a^3}}}{{54}}\)
\({S_{D'HF}} = \frac{1}{2}D'H.D'F = \frac{1}{2}.\frac{{3a}}{4}.a = \frac{{3{a^2}}}{8}\)\( \Rightarrow {V_{K.D'HF}} = \frac{1}{3}.KD'.{S_{D'HF}} = \frac{1}{3}.\frac{a}{2}.\frac{{3{a^2}}}{8} = \frac{{{a^3}}}{{16}}\)
Vậy \({V_1} = {V_{C.C'EF}} - {V_{M.B'EG}} - {V_{K.D'HF}} = \frac{{{a^3}}}{2} - \frac{{{a^3}}}{{54}} - \frac{{{a^3}}}{{16}} = \frac{{181{a^3}}}{{432}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Một chất điểm chuyển động với phương trình trong đó , t được tính bằng giây (s) và s được tính bằng mét (m). Vận tốc của chất điểm tại thời điểm t = 3(s) bằng
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận