Câu hỏi:

19/08/2025 1,985 Lưu

Cho hàm số y=f(x) có bảng biến thiên như hình vẽ dưới đây:

Cho hàm số  có bảng biến thiên như hình vẽ dưới đây (ảnh 1)

Số giá trị nguyên của tham số \(m\) để phương trình \(f\left( {3 - x} \right) = m\) có đúng hai nghiệm phân biệt là:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 2

Phương pháp giải:

- Đặt \(t = 3 - x\), đưa phương trình về dạng \(f\left( t \right) = m{\mkern 1mu} {\mkern 1mu} \left( * \right)\).

- Để phương trình ban đầu có đúng 2 nghiệm phân biệt thì phương trình (*) cũng phải có đúng 2 nghiệm phân biệt \( \Rightarrow \) Đường thẳng \(y = m\) cắt đồ thị hàm số \(y = f\left( t \right)\) tại đúng 2 điểm phân biệt. Dựa vào BBT suy ra các giá trị của \(m\) thỏa mãn.

Giải chi tiết:

Đặt \(t = 3 - x\), phương trình trở thành \(f\left( t \right) = m{\mkern 1mu} {\mkern 1mu} \left( * \right)\). Số nghiệm của phương trình là số giao điểm của đồ thị hàm số \(y = f\left( t \right)\) và đường thẳng \(y = m\).

Để phương trình ban đầu có đúng 2 nghiệm phân biệt thì phương trình (*) cũng phải có đúng 2 nghiệm phân biệt \( \Rightarrow \) Đường thẳng \(y = m\) cắt đồ thị hàm số \(y = f\left( t \right)\) tại đúng 2 điểm phân biệt [m=-12<m<4.

\(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 1;3} \right\}\).

Vậy có 2 giá trị của \(m\) thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(\frac{{a\sqrt 6 }}{6}\)

Phương pháp giải:

- Gọi M là trung điểm của BC, trong (SOM) kẻ \(OH \bot SM{\mkern 1mu} {\mkern 1mu} \left( {H \in SM} \right)\), chứng minh \(OH \bot \left( {SBC} \right)\).

- Áp dụng định lí Pytago và hệ thức lượng trong tam giác vuông tính khoảng cách.

Giải chi tiết:

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy và cạnh bên bằng a, gọi O là tâm của đáy ABCD. Khoảng cách từ O đến mặt phẳng (ảnh 1)

Gọi M là trung điểm của BC, suy ra OM là đường trung bình của tam giác ABC.

\( \Rightarrow OM\parallel AB\), mà \(AB \bot BC\)\( \Rightarrow OM \bot BC\)\(OM = \frac{1}{2}AB = \frac{a}{2}\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot OM}\\{BC \bot SO{\mkern 1mu} {\mkern 1mu} \left( {SO \bot \left( {ABCD} \right)} \right)}\end{array}} \right.\)\( \Rightarrow BC \bot \left( {SOM} \right)\)

Trong (SOM) kẻ \(OH \bot SM{\mkern 1mu} {\mkern 1mu} \left( {O \in SM} \right)\), ta có:

\(\left\{ {\begin{array}{*{20}{l}}{BC \bot \left( {SOM} \right) \Rightarrow BC \bot OH}\\{OH \bot SM}\end{array}} \right.\)\( \Rightarrow OH \bot \left( {SBC} \right)\)

\( \Rightarrow d\left( {O;\left( {SBC} \right)} \right) = OH\).

Tam giác SBC đều cạnh a nên \(SM = \frac{{a\sqrt 3 }}{2}\).

Áp dụng định lí Pytago trong tam giác vuông SOM có: SO=SM2-OM2=3a24-a24 =a2.

Áp dụng hệ thức lượng trong tam giác vuông SOM có: \(OH = \frac{{SO.OM}}{{SM}} = \frac{{\frac{a}{{\sqrt 2 }}.\frac{a}{2}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{a\sqrt 6 }}{6}\).

Vậy \(d\left( {O;\left( {SBC} \right)} \right) = \frac{{a\sqrt 6 }}{6}\).

Lời giải

Giải chi tiết:

PTHH:  M2Om  +  mH2SO4    M2(SO4)m  +  mH2O

Giả sử có 1 mol M2Om phản ứng thì số gam dung dịch H2SO4 10% là 980m (g)

Khối lượng dung dịch thu được là: (2M + 16m) + 980m = 2M + 996m (g)

Số gam muối là: 2M + 96m (g)

Ta có C% = \(\frac{{2M + 96m}}{{2M + 996m}}.100\% \) = 12,9% M = 18,65m

Nghiệm phù hợp là m = 3 và M = 56 (Fe).

Vậy oxit là Fe2O3.

        Fe2O3  +  3H2SO4    Fe2(SO4)3  +  3H2O

nFe2O3 = \(\frac{{3,2}}{{160}}\) = 0,02 mol

Vì hiệu suất là 70% nên số mol Fe2(SO4)3 tham gia kết tinh là: 0,02.70% = 0,014 mol

Nhận thấy số gam Fe2(SO4)3 = 0,014.400 = 5,6 gam < 7,868 gam nên tinh thể là muối ngậm nước.

Đặt CTHH của muối tinh thể là Fe2(SO4)3.nH2O.

Ta có: 0,014.(400 + 18n) = 7,868 n = 9.

Công thức của tinh thể là Fe2(SO4)3.9H2O.

Câu 4

A. Dân số nông thôn chiếm tỉ trọng lớn và có xu hướng ngày càng giảm.
B. Dân số nông thôn luôn cao gấp nhiều lần dân số thành thị.
C. Dân số nông thôn chiếm tỉ trọng lớn và có xu hướng ngày càng tăng.
D. Dân số thành thị chiếm tỉ trọng thấp và có xu hướng ngày càng tăng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP