Câu hỏi:
13/07/2024 384Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án: 16
Phương pháp giải:
Phương pháp tìm tập hợp điểm biểu diễn số phức
Bước 1: Gọi số phức \(z = x + yi\) có điểm biểu diễn là \(M(x;y)\)
Bước 2: Thay z vào đề bài \( \Rightarrow \) Sinh ra một phương trình:
+) Đường thẳng: \(Ax + By + C = 0.\)
+) Đường tròn: \({x^2} + {y^2} - 2ax - 2by + c = 0.\)
+) Parabol: \(y = a.{x^2} + bx + c\)
+) Elip: \(\frac{{{x^2}}}{a} + \frac{{{y^2}}}{b} = 1\)
Giải chi tiết:
Giả sử ta có số phức \(z = x + yi\). Thay vào điều kiện \(2|z - 1 - 2i| = |3i + 1 - 2\bar z|\)có
\(2|(x + yi) - 1 - 2i| = |3i + 1 - 2(x - yi)| \Leftrightarrow 2|(x - 1) + (y - 2)i| = |(1 - 2x) + (3 + 2y)i|\)
\( \Leftrightarrow 4{(x - 1)^2} + 4{(y - 2)^2} = {(1 - 2x)^2} + {(3 + 2y)^2}\)
\( \Leftrightarrow 4{x^2} - 8x + 4 + 4{y^2} - 16y + 16 = 4{x^2} - 4x + 1 + 4{y^2} + 12y + 9\)
\( \Leftrightarrow 4x + 28y - 10 = 0\)\( \Leftrightarrow 2x + 14y - 5 = 0\)
\( \Rightarrow a = 2,{\mkern 1mu} {\mkern 1mu} b = 14\)
Vậy \(P = a + b = 2 + 14 = 16.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 5:
Câu 6:
Một chất điểm chuyển động với phương trình trong đó , t được tính bằng giây (s) và s được tính bằng mét (m). Vận tốc của chất điểm tại thời điểm t = 3(s) bằng
về câu hỏi!