Câu hỏi:

13/07/2024 5,770 Lưu

Xét các số thực không âm \(x\)\(y\) thỏa mãn 2x+y.4x+y-13. Giá trị nhỏ nhất của biểu thức \(P = {x^2} + {y^2} + 4x + 2y\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: \(\frac{{41}}{8}\)

Phương pháp giải:

Sử dụng phương pháp hàm số để giải bài toán.

Giải chi tiết:

Ta có: \(2x + y{.4^{x + y - 1}} \ge 3\)

\( \Leftrightarrow 2x - 3 + y{.4^x}{.4^{y - 1}} \ge 0\)

\( \Leftrightarrow \left( {2x - 3} \right){.4^{ - x}} + y{.4^{y - 1}} \ge 0\)

\( \Leftrightarrow y{.4^{y - 1}} \ge \left( {3 - 2x} \right){.4^{ - x}}\)

\( \Leftrightarrow y{.2^{2y - 2}} \ge \left( {3 - 2x} \right){.2^{ - 2x}}\)

\( \Leftrightarrow {2^3}.y{.2^{2y - 2}} \ge {2^3}.\left( {3 - 2x} \right){.2^{ - 2x}}\)

\( \Leftrightarrow 2y{.2^{2y}} \ge \left( {3 - 2x} \right){.2^{3 - 2x}}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 1 \right)\)

TH1: Với \(3 - 2x \le 0\)\( \Leftrightarrow x \ge \frac{3}{2}\)

\( \Rightarrow \left( 1 \right)\) đúng với mọi giá trị \(\left\{ {\begin{array}{*{20}{l}}{x \ge \frac{3}{2}}\\{y \ge 0}\end{array}} \right.\)

\( \Rightarrow P = {x^2} + {y^2} + 4x + 2y \ge \frac{{33}}{4}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 2 \right)\)

TH2: Với \(3 - 2x > 0\)\( \Leftrightarrow 0 \le x < \frac{3}{2}\)

Xét hàm số: \(f\left( t \right) = t{.2^t}\) với \(t \ge 0\)

\( \Rightarrow f'\left( t \right) = {2^t} + t{.2^t}.\ln 2 > 0{\mkern 1mu} {\mkern 1mu} \forall t \ge 0\)

\( \Rightarrow f\left( t \right)\) là hàm số đồng biến trên \(\left( {0; + \infty } \right).\)

\( \Rightarrow \left( 1 \right) \Leftrightarrow f\left( {2y} \right) \ge f\left( {3 - 2x} \right)\)\( \Leftrightarrow 2y \ge 3 - 2x\)\( \Leftrightarrow y \ge \frac{3}{2} - x\)

\( \Rightarrow P = {x^2} + {y^2} + 4x + 2y\)\( \ge {x^2} + {\left( {\frac{3}{2} - x} \right)^2} + 4x + 3 - 2x\)\( = 2{x^2} - x + \frac{{21}}{4}\)

\( \Rightarrow P = 2{\left( {x - \frac{1}{4}} \right)^2} + \frac{{41}}{8} \ge \frac{{41}}{8}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 3 \right)\)

Từ (2) và (3) ta được: \(Min{\mkern 1mu} {\mkern 1mu} P = \frac{{41}}{8}\)

Dấu “=” xảy ra \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{1}{4}}\\{y = \frac{5}{4}}\end{array}} \right..\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(\frac{{a\sqrt 6 }}{6}\)

Phương pháp giải:

- Gọi M là trung điểm của BC, trong (SOM) kẻ \(OH \bot SM{\mkern 1mu} {\mkern 1mu} \left( {H \in SM} \right)\), chứng minh \(OH \bot \left( {SBC} \right)\).

- Áp dụng định lí Pytago và hệ thức lượng trong tam giác vuông tính khoảng cách.

Giải chi tiết:

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy và cạnh bên bằng a, gọi O là tâm của đáy ABCD. Khoảng cách từ O đến mặt phẳng (ảnh 1)

Gọi M là trung điểm của BC, suy ra OM là đường trung bình của tam giác ABC.

\( \Rightarrow OM\parallel AB\), mà \(AB \bot BC\)\( \Rightarrow OM \bot BC\)\(OM = \frac{1}{2}AB = \frac{a}{2}\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot OM}\\{BC \bot SO{\mkern 1mu} {\mkern 1mu} \left( {SO \bot \left( {ABCD} \right)} \right)}\end{array}} \right.\)\( \Rightarrow BC \bot \left( {SOM} \right)\)

Trong (SOM) kẻ \(OH \bot SM{\mkern 1mu} {\mkern 1mu} \left( {O \in SM} \right)\), ta có:

\(\left\{ {\begin{array}{*{20}{l}}{BC \bot \left( {SOM} \right) \Rightarrow BC \bot OH}\\{OH \bot SM}\end{array}} \right.\)\( \Rightarrow OH \bot \left( {SBC} \right)\)

\( \Rightarrow d\left( {O;\left( {SBC} \right)} \right) = OH\).

Tam giác SBC đều cạnh a nên \(SM = \frac{{a\sqrt 3 }}{2}\).

Áp dụng định lí Pytago trong tam giác vuông SOM có: SO=SM2-OM2=3a24-a24 =a2.

Áp dụng hệ thức lượng trong tam giác vuông SOM có: \(OH = \frac{{SO.OM}}{{SM}} = \frac{{\frac{a}{{\sqrt 2 }}.\frac{a}{2}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{a\sqrt 6 }}{6}\).

Vậy \(d\left( {O;\left( {SBC} \right)} \right) = \frac{{a\sqrt 6 }}{6}\).

Lời giải

Giải chi tiết:

PTHH:  M2Om  +  mH2SO4    M2(SO4)m  +  mH2O

Giả sử có 1 mol M2Om phản ứng thì số gam dung dịch H2SO4 10% là 980m (g)

Khối lượng dung dịch thu được là: (2M + 16m) + 980m = 2M + 996m (g)

Số gam muối là: 2M + 96m (g)

Ta có C% = \(\frac{{2M + 96m}}{{2M + 996m}}.100\% \) = 12,9% M = 18,65m

Nghiệm phù hợp là m = 3 và M = 56 (Fe).

Vậy oxit là Fe2O3.

        Fe2O3  +  3H2SO4    Fe2(SO4)3  +  3H2O

nFe2O3 = \(\frac{{3,2}}{{160}}\) = 0,02 mol

Vì hiệu suất là 70% nên số mol Fe2(SO4)3 tham gia kết tinh là: 0,02.70% = 0,014 mol

Nhận thấy số gam Fe2(SO4)3 = 0,014.400 = 5,6 gam < 7,868 gam nên tinh thể là muối ngậm nước.

Đặt CTHH của muối tinh thể là Fe2(SO4)3.nH2O.

Ta có: 0,014.(400 + 18n) = 7,868 n = 9.

Công thức của tinh thể là Fe2(SO4)3.9H2O.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP