Câu hỏi:
19/05/2022 595Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án: \(8\sqrt 2 \)
Phương pháp giải:
- Gọi số đo của hình hộp chữ nhật là \(a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\). Diện tích toàn phần hình hộp chữ nhật là \({S_{tp}} = 2\left( {ab + bc + ca} \right)\) và thể tích khối hộp chữ nhật là \(V = abc\).
- Sử dụng hằng đẳng thức biểu diễn \(a + c\) theo \(b\).
- Tính thể tích theo biến \(b\), sử dụng phương pháp hàm số để tìm GTLN của hàm số.
Giải chi tiết:
Gọi số đo của hình hộp chữ nhật là \(a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\).
Khi đó ta có \({S_{tp}} = 2\left( {ab + bc + ca} \right) = 36\) và độ dài đường chéo bằng 6 nên \({a^2} + {b^2} + {c^2} = 36\).
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{a^2} + {b^2} + {c^2} = 36}\\{ab + bc + ca = 18}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{{\left( {a + b + c} \right)}^2} = 72}\\{ab + bc + ca = 18}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a + b + c = 6\sqrt 2 }\\{b\left( {a + c} \right) + ac = 18}\end{array}} \right.\)
Khi đó
\( = b\left[ {18 - 6\sqrt 2 b + {b^2}} \right]\)
\( = {b^3} - 6\sqrt 2 {b^2} + 18b = f\left( b \right)\)
Ta có:
Để tồn tại thì
\( \Leftrightarrow {b^2} - 12\sqrt 2 b + 72 \ge 72 + 4{b^2} - 24\sqrt 2 b\)
\( \Leftrightarrow 3{b^2} - 12\sqrt 2 b \le 0\)
\( \Leftrightarrow 0 \le b \le 4\sqrt 2 \)
Xét hàm số \(f\left( b \right) = {b^3} - 6\sqrt 2 {b^2} + 18b{\mkern 1mu} {\mkern 1mu} \left( {0 < b \le 4\sqrt 2 } \right)\) ta có: \(f'\left( b \right) = 3{b^2} - 12\sqrt 2 b + 18 = 0 \Rightarrow \left[ {\begin{array}{*{20}{l}}{b = 3\sqrt 2 }\\{b = \sqrt 2 }\end{array}} \right.{\mkern 1mu} {\mkern 1mu} \left( {tm} \right)\)
\(f\left( {3\sqrt 2 } \right) = 0;{\mkern 1mu} {\mkern 1mu} f\left( {\sqrt 2 } \right) = 8\sqrt 2 \)
Ta có BBT:
Từ BBT \[ \Rightarrow \mathop {max}\limits_{\left[ {0;4\sqrt 2 } \right]} f\left( b \right) = 8\sqrt 2 \].
Vậy .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 5:
Câu 6:
Một chất điểm chuyển động với phương trình trong đó , t được tính bằng giây (s) và s được tính bằng mét (m). Vận tốc của chất điểm tại thời điểm t = 3(s) bằng
về câu hỏi!