Câu hỏi:

19/05/2022 2,791 Lưu

Sớm hôm sau, lính tỉnh dẫn đến cửa ngục thất sáu tên tù mà công văn chiều hôm qua đã báo trước cho ngục quan biết rõ tên tuổi, làng xóm và tội hình. Sáu phạm nhân mang chung một chiếc gông dài tám thước. Cái thang dài ấy đặt ngang trên sáu bộ vai gầy. Cái thang gỗ lim nặng, đóng khung lấy sáu cái cổ phiến loạn, nếu đem bắt lên mỏ cân, có thể nặng đến bảy tám tạ. Thật là một cái gông xứng đáng với tội án sáu người tử tù. Gỗ thân gông đã cũ và mồ hôi cổ mồ hôi tay kẻ phải đeo nó đã phủ lên một nước quang dầu bóng loáng. Những đoạn gông đã bóng thì loáng như có người đánh lá chuối khô. Những đoạn không bóng thì lại sỉn lại những chất ghét đen sánh.

(Trích đoạn trích Chữ người tử tù, Nguyễn Tuân, SGK Ngữ văn lớp 11, tập 1)

Hình ảnh cái gông được Nguyễn Tuân miêu tả khá kĩ và rất ấn tượng chủ yếu nhằm dụng ý gì?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

Căn cứ vào nội dung đoạn trích

Giải chi tiết:

Hình ảnh chiếc gông được miêu tả một cách rất kĩ nhằm thể hiện khí phách của Huấn Cao. Cái gôm có nặng đến thế nào, sự áp bức của chế độ có nặng nề bao nhiêu cũng không ngăn nổi khí phách hiên ngang của người anh hùng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(\frac{{a\sqrt 6 }}{6}\)

Phương pháp giải:

- Gọi M là trung điểm của BC, trong (SOM) kẻ \(OH \bot SM{\mkern 1mu} {\mkern 1mu} \left( {H \in SM} \right)\), chứng minh \(OH \bot \left( {SBC} \right)\).

- Áp dụng định lí Pytago và hệ thức lượng trong tam giác vuông tính khoảng cách.

Giải chi tiết:

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy và cạnh bên bằng a, gọi O là tâm của đáy ABCD. Khoảng cách từ O đến mặt phẳng (ảnh 1)

Gọi M là trung điểm của BC, suy ra OM là đường trung bình của tam giác ABC.

\( \Rightarrow OM\parallel AB\), mà \(AB \bot BC\)\( \Rightarrow OM \bot BC\)\(OM = \frac{1}{2}AB = \frac{a}{2}\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot OM}\\{BC \bot SO{\mkern 1mu} {\mkern 1mu} \left( {SO \bot \left( {ABCD} \right)} \right)}\end{array}} \right.\)\( \Rightarrow BC \bot \left( {SOM} \right)\)

Trong (SOM) kẻ \(OH \bot SM{\mkern 1mu} {\mkern 1mu} \left( {O \in SM} \right)\), ta có:

\(\left\{ {\begin{array}{*{20}{l}}{BC \bot \left( {SOM} \right) \Rightarrow BC \bot OH}\\{OH \bot SM}\end{array}} \right.\)\( \Rightarrow OH \bot \left( {SBC} \right)\)

\( \Rightarrow d\left( {O;\left( {SBC} \right)} \right) = OH\).

Tam giác SBC đều cạnh a nên \(SM = \frac{{a\sqrt 3 }}{2}\).

Áp dụng định lí Pytago trong tam giác vuông SOM có: SO=SM2-OM2=3a24-a24 =a2.

Áp dụng hệ thức lượng trong tam giác vuông SOM có: \(OH = \frac{{SO.OM}}{{SM}} = \frac{{\frac{a}{{\sqrt 2 }}.\frac{a}{2}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{a\sqrt 6 }}{6}\).

Vậy \(d\left( {O;\left( {SBC} \right)} \right) = \frac{{a\sqrt 6 }}{6}\).

Lời giải

Giải chi tiết:

PTHH:  M2Om  +  mH2SO4    M2(SO4)m  +  mH2O

Giả sử có 1 mol M2Om phản ứng thì số gam dung dịch H2SO4 10% là 980m (g)

Khối lượng dung dịch thu được là: (2M + 16m) + 980m = 2M + 996m (g)

Số gam muối là: 2M + 96m (g)

Ta có C% = \(\frac{{2M + 96m}}{{2M + 996m}}.100\% \) = 12,9% M = 18,65m

Nghiệm phù hợp là m = 3 và M = 56 (Fe).

Vậy oxit là Fe2O3.

        Fe2O3  +  3H2SO4    Fe2(SO4)3  +  3H2O

nFe2O3 = \(\frac{{3,2}}{{160}}\) = 0,02 mol

Vì hiệu suất là 70% nên số mol Fe2(SO4)3 tham gia kết tinh là: 0,02.70% = 0,014 mol

Nhận thấy số gam Fe2(SO4)3 = 0,014.400 = 5,6 gam < 7,868 gam nên tinh thể là muối ngậm nước.

Đặt CTHH của muối tinh thể là Fe2(SO4)3.nH2O.

Ta có: 0,014.(400 + 18n) = 7,868 n = 9.

Công thức của tinh thể là Fe2(SO4)3.9H2O.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP