Câu hỏi:
20/05/2022 306Cho các cân bằng hóa học sau:
(1) N2(k) + 3H2(k) ⇄ 2NH3(k).
(2) 2SO2(k) + O2(k) ⇄ 2SO3(k).
(3) CO2(k) + H2(k) ⇄ CO(k) + H2O(k).
(4) N2O4(k) ⇄ 2NO2(k).
(5) C(r) + CO2(k) ⇄ 2CO(k).
Số cân bằng chuyển dịch theo chiều thuận khi tăng áp suất của hệ phản ứng là
Quảng cáo
Trả lời:
Phương pháp giải:
Nguyên lí chuyển dịch cân bằng Lơ Sa-tơ-li-ê: Một phản ứng thuận nghịch đang ở trạng thái cân bằng khi chịu tác động từ bên ngoài như biến đổi nồng độ, áp suất, nhiệt độ, thì cân bằng sẽ chuyển dịch theo chiều làm giảm tác động bên ngoài đó.
Ở phản ứng trong pha khí, áp suất tỉ lệ thuận với số mol các khí trong hệ.
Giải chi tiết:
- Khi tăng áp suất của hệ, theo nguyên lí chuyển dịch cân bằng Lơ Sa-tơ-li-ê: cân bằng sẽ chuyển dịch theo chiều làm giảm áp suất của hệ.
- Xét cân bằng (1): vế trái có 3 + 1 = 4 mol khí, vế phải có 2 mol khí
⟹ Khi tăng áp suất của hệ, cân bằng sẽ dịch chuyển theo chiều làm giảm áp suất của hệ (giảm số mol khí) → chiều thuận.
- Xét cân bằng (2): vế trái có 2 + 1 = 3 mol khí, vế phải có 2 mol khí
⟹ Khi tăng áp suất của hệ, cân bằng sẽ dịch chuyển theo chiều làm giảm áp suất của hệ (giảm số mol khí) → chiều thuận.
- Xét cân bằng (3): vế trái có 1 + 1 = 2 mol khí, vế phải có 1 + 1 = 2 mol khí
⟹ Cả 2 vế có số mol khí bằng nhau.
⟹ Áp suất của hệ không ảnh hưởng đến sự chuyển dịch của cân bằng này.
- Xét cân bằng (3): vế trái có 1 mol khí, vế phải có 2 mol khí
⟹ Khi tăng áp suất của hệ, cân bằng sẽ dịch chuyển theo chiều làm giảm áp suất (giảm số mol khí) của hệ → chiều nghịch.
- Xét cân bằng (4): vế trái có 1 mol khí, vế phải có 2 mol khí
⟹ Khi tăng áp suất của hệ, cân bằng sẽ dịch chuyển theo chiều làm giảm áp suất (giảm số mol khí) của hệ → chiều nghịch.
Vậy khi tăng áp suất của các hệ phản ứng, có 2 cân bằng dịch chuyển theo chiều thuận là (1) và (2).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(\frac{{a\sqrt 6 }}{6}\)
Phương pháp giải:
- Gọi M là trung điểm của BC, trong (SOM) kẻ \(OH \bot SM{\mkern 1mu} {\mkern 1mu} \left( {H \in SM} \right)\), chứng minh \(OH \bot \left( {SBC} \right)\).
- Áp dụng định lí Pytago và hệ thức lượng trong tam giác vuông tính khoảng cách.
Giải chi tiết:
Gọi M là trung điểm của BC, suy ra OM là đường trung bình của tam giác ABC.
\( \Rightarrow OM\parallel AB\), mà \(AB \bot BC\)\( \Rightarrow OM \bot BC\) và \(OM = \frac{1}{2}AB = \frac{a}{2}\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot OM}\\{BC \bot SO{\mkern 1mu} {\mkern 1mu} \left( {SO \bot \left( {ABCD} \right)} \right)}\end{array}} \right.\)\( \Rightarrow BC \bot \left( {SOM} \right)\)
Trong (SOM) kẻ \(OH \bot SM{\mkern 1mu} {\mkern 1mu} \left( {O \in SM} \right)\), ta có:
\(\left\{ {\begin{array}{*{20}{l}}{BC \bot \left( {SOM} \right) \Rightarrow BC \bot OH}\\{OH \bot SM}\end{array}} \right.\)\( \Rightarrow OH \bot \left( {SBC} \right)\)
\( \Rightarrow d\left( {O;\left( {SBC} \right)} \right) = OH\).
Tam giác SBC đều cạnh a nên \(SM = \frac{{a\sqrt 3 }}{2}\).
Áp dụng định lí Pytago trong tam giác vuông SOM có: .
Áp dụng hệ thức lượng trong tam giác vuông SOM có: \(OH = \frac{{SO.OM}}{{SM}} = \frac{{\frac{a}{{\sqrt 2 }}.\frac{a}{2}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{a\sqrt 6 }}{6}\).
Vậy \(d\left( {O;\left( {SBC} \right)} \right) = \frac{{a\sqrt 6 }}{6}\).
Lời giải
Phương pháp giải:
CSC \(\left( {{u_n}} \right)\)có tổng \(n\) số hạng đầu: \({S_n} = {u_1} + {u_2} + ... + {u_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\)
Giải chi tiết:
Tổng số viên gạch: \(S = 1 + 2 + ... + 500 = \frac{{500.\left( {1 + 500} \right)}}{2} = 125250\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)