Câu hỏi:

14/01/2020 65,203

Cho hai dãy ghế được xếp như sau :

Xếp 4 bạn nam và 4 bạn nữ vào hai dãy ghế trên. Hai người được gọi là ngồi đối diện với nhau nếu ngồi ở hai dãy và có cùng vị trí ghế (số ở ghế). Số cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp :

+) Chọn vị trí cho các bạn nam (hoặc nữ).

+) Hoán đổi các vị trí.

+) Sử dụng quy tắc nhân.

Cách giải : Chọn 1 vị trí trong 2 vị trí đối xứng có C21 cách chọn, như vậy có (C21)4 = 24 cách chọn ghế cho 4 bạn nam.

4 bạn nam này có thể đổi chỗ cho nhau nên có 4! cách xếp

Vậy có 4!4!24 cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp.

Sử dụng định nghĩa của xác suất.

Lời giải chi tiết.

Tổng số sách là 4 + 3 + 2 = 9. Số cách lấy 3 quyển sách là C93 = 84 (cách).

Số quyển sách không phải là sách toán là 3 + 2 = 5

Số cách lấy 3 quyển sách không phải là sách toán là C53 = 10 (cách).

Do đó số cách lấy được ít nhất một quyển sách toán là 84 - 10 = 74 (cách).

Vậy xác suất để lấy đượcc ít nhất một quyển là toán là 74 84 = 3742

Lời giải

Đáp án B

Phương pháp.

Chia ra các khả năng có thể có của học sinh các lớp. Tính số cách chọn có thể có của mỗi trường hợp này. Lấy tổng kết quả các khả năng ở trên lại.

Lời giải chi tiết.

Cách 1:

Ta xét các trường hợp sau. 

Có 1 học sinh lớp 12C có 2 học sinh lớp 12B và 2 học sinh lớp 12A khi đó ta có 2C32C42 = 36 

 cách chọn.

Có 1 học sinh lớp 12C có 3 học sinh lớp 12B và 1 học sinh lớp 12A khi đó ta có 2C33C41 = 8 cách chọn.

Có 1 học sinh lớp 12C có 1  học sinh lớp 12B và 3 học sinh lớp 12A khi đó ta có 2C31C43 = 24 cách chọn.

Có 2 học sinh lớp 12C có 1 học sinh lớp 12B và 2 học sinh lớp 12A khi đó ta có C31C42 = 18 cách chọn.

Có 2 học sinh lớp 12C có 2 học sinh lớp 12B và 1 học sinh lớp 12A khi đó ta có C32C41 = 12 cách chọn.

Vậy tổng số cách chọn là 36 + 8 + 24 + 18 + 12 = 98

Cách 2:

Số cách chọn 5 bạn từ đội văn nghệ là: \(C_9^5\)

Số cách chọn 5 bạn chỉ từ hai lớp 12A và 12B: \(C_7^5\)

Số cách chọn 5 bạn chỉ từ hai lớp 12B và 12C: \(C_5^5\)

Số cách chọn 5 bạn chỉ từ hai lớp 12C và 12A: \(C_6^2\)

Vậy số cách để chọn 5 bạn từ đội văn nghệ sao cho lớp nào cũng có học sinh được chọn là:

\(C_9^5 - C_7^5 - C_5^5 - C_6^5 = 98\)

Chọn B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay