Câu hỏi:

21/05/2022 13,476

Cho tam giác ABC.

a) Hãy xác định điểm M để MA+MB+2MC=0.

b) Chứng minh rằng với mọi điểm O, ta có: OA+OB+2OC=4OM.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Gọi G là trọng tâm tam giác ABC, có: .

Xét MA+MB+2MC=0

MG+GA+MG+GB+2MG+2GC=04MG+GA+GB+GC+GC=04MG+GC=0MG=14CG

Suy ra điểm M nằm giữa C và G sao cho MG=14CG.

Cho tam giác ABC. a) Hãy xác định điểm M để vecto MA + vecto MB + 2 vecto MC (ảnh 1)

b) Ta có:  VT=OA+OB+2OC=OM+MA+OM+MB+2OM+2MC

=4OM+MA+MB+2MC=4OM=VP.

(Do MA+MB+2MC=0)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chất điểm A chịu tác động của ba lực F1,F2,F3như Hình 4.30 và ở trạng thái cân bằng (tức là F1+F2+F3=0). Tính độ lớn của các lực F2,F3, biết F1 có độ lớn là 20N.

Chất điểm A chịu tác động của ba lực vecto F1, vecto F2, vecto F3 như Hình 4.30 (ảnh 1)

Xem đáp án » 21/05/2022 73,061

Câu 2:

Cho hình bình hành ABCD. Gọi M là trung điểm cạnh BC. Hãy biểu thị AM theo hai vecto AB và AD.

Xem đáp án » 21/05/2022 27,491

Câu 3:

Cho hai điểm phân biệt A và B.

a) Hãy xác định điểm K sao cho KA+2KB=0.

b) Chứng minh rằng với mọi điểm O, ta có: OK=13OA+23OB.

Xem đáp án » 21/05/2022 23,501

Câu 4:

Cho tứ giác ABCD. Gọi M, N tương ứng là trung điểm của các cạnh AB, CD. Chứng minh rằng BC+AD=2MN=AC+BD.

Xem đáp án » 21/05/2022 17,818

Câu 5:

Cho đường thẳng d đi qua hai điểm phân biệt A và B (H.4.25). Những khẳng định nào sau đây là đúng?

a) Điểm M thuộc đường thẳng d khi và chỉ khi tồn tại số t để AM=tAB.

b) Với điểm M bất kì, ta luôn có: AM=AMAB.AB.

c) Điểm M thuộc tia đối của tia AB khi và chỉ khi tồn tại số t ≤ 0 để AM=tAB.

Cho đường thẳng d đi qua hai điểm phân biệt A và B (H.4.25). Những khẳng định nào  (ảnh 1)

Xem đáp án » 21/05/2022 3,474

Câu 6:

Cho tam giác ABC có trọng tâm G. Chứng minh với điểm O tùy ý, ta có:

OA+OB+OC=3OG

Xem đáp án » 21/05/2022 2,709
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua