Câu hỏi:
24/05/2022 1,217Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp giải: - Giải phương trình thứ nhất tìm x.
- Thế xx tìm được vào phương trình thứ hai tìm y. Với mỗi giá trị của x cho tối đa 2 giá trị của y.
- Tìm điều kiện để hệ có 4 cặp nghiệm.
Giải chi tiết:
Xét phương trình
Với \[x = 2\], phương trình thứ hai trở thành \[{y^2} + y + 2m - 4 = 0\] (1)
Với , phương trình thứ hai trở thành \[{y^2} + y - 2m - 4 = 0\] (2)
Để hệ phương trình đã cho có 4 cặp nghiệm thì phương trình (1) và (2), mỗi phương trình đều phải có 2 nghiệm phân biệt
\[\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}1 - 4(2m - 4) > 0\\1 - 4( - 2m - 4) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 - 8m + 16 > 0\\1 + 8m + 16 > 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}8m < 17\\8m > 17\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m < \frac{{17}}{8}\\m > \frac{{17}}{8}\end{array} \right. \Rightarrow m \in \emptyset \end{array}\]
Vậy không có giá trị nào của mm thỏa mãn yêu cầu bài toán.
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 7:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Câu hỏi điền từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
về câu hỏi!