Câu hỏi:
22/05/2022 2,243Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Phương pháp giải: - Tìm đạo hàm của hàm số.
- Cô lập m, đưa bất phương trình về dạng \[m \le f(x)\forall x \in (a;b) \Leftrightarrow m \le \mathop {min}\limits_{[a;b]} f(x)\].
- Lập BBT của hàm số \[f(x)\] và kết luận.
Giải chi tiết:
Ta có hàm số nghịch biến trên khoảng khi
\[ \Leftrightarrow 4m \le 3{x^2} - 2x - 9\left( * \right)\]
Đặt \[f\left( x \right) = 3{x^2} - 2x - 9\]\[ \Rightarrow f'\left( x \right) = 6x - 2 = 0 \Leftrightarrow x = \frac{1}{3}\]
Bảng biến thiên:
Dựa vào bảng biến thiên ta thấy bất phương trình (*) xảy ra khi
Kết hợp điều kiện nên . Mà .
Vậy có 7 giá trị của m thỏa mãn yêu cầu bài toán.
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 7:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!