Câu hỏi:
24/05/2022 357Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp giải:
+) Sử dụng công thức tính độ dài đoạn thẳng AB: \[AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \]
+) Sử dụng đẳng thức \[M{A^2} = M{B^2} + M{C^2}\] suy ra phương trình mặt cầu (S) mà \[M \in \left( S \right)\]. Tìm bán kính của mặt cầu đó.
Giải chi tiết:
\[\begin{array}{l}M{A^2} = M{B^2} + M{C^2}\\ \Leftrightarrow {(1 - x)^2} + {y^2} + {z^2} = {x^2} + {(2 - y)^2} + {z^2} + {x^2} + {y^2} + {(3 - z)^2}\\ \Leftrightarrow {x^2} + {y^2} + {z^2} - 2x + 1 = 2{x^2} + 2{y^2} + 2{z^2} - 4y - 6z + 13\\ \Leftrightarrow {x^2} + {y^2} + {z^2} + 2x - 4y - 6z + 12 = 0( * )\end{array}\]
Điểm \[M\left( {x,y,z} \right)\] thỏa mãn phương trình (*) có dạng phương trình mặt cầu. Ta có , do đó tập hợp các điểm M thỏa mãn yêu cầu bài toán là mặt cầu có bán kính \[R = \sqrt 2 \].
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 7:
về câu hỏi!