Câu hỏi:
24/05/2022 157Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp giải: - Xét tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \sin 2x.f\left( {{{\cos }^2}x} \right)dx\], đổi biến \[t = {\cos ^2}x\]. Tính được \[\mathop \smallint \limits_0^1 f\left( x \right)dx\].
- Sử dụng tính chất tích phân \[\mathop \smallint \limits_a^b \left[ {f\left( x \right) + g\left( x \right)} \right]dx = \mathop \smallint \limits_a^b f\left( x \right)dx + \mathop \smallint \limits_a^b g\left( x \right)dx\], phân tích \[\mathop \smallint \limits_0^1 \left[ {2f\left( {1 - x} \right) - 3{x^2} + 5} \right]dx\]
- Tiếp tục đổi biến hoặc đưa biến vào vi phân, biểu diễn \[\mathop \smallint \limits_0^1 \left[ {2f\left( {1 - x} \right) - 3{x^2} + 5} \right]dx\] theo \[\mathop \smallint \limits_0^1 f\left( x \right)dx\] và tính.
Giải chi tiết:
Xét tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \sin 2x.f\left( {{{\cos }^2}x} \right)dx\].
Đặt .
Đổi cận: \[x = 0 \Rightarrow t = 1,{\mkern 1mu} {\mkern 1mu} x = \frac{\pi }{2} \Rightarrow t = 0\].
Khi đó ta có .
Ta có:
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 7:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Câu hỏi điền từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
về câu hỏi!