Câu hỏi:
24/05/2022 191Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Phương pháp giải: - Xét tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \sin 2x.f\left( {{{\cos }^2}x} \right)dx\], đổi biến \[t = {\cos ^2}x\]. Tính được \[\mathop \smallint \limits_0^1 f\left( x \right)dx\].
- Sử dụng tính chất tích phân \[\mathop \smallint \limits_a^b \left[ {f\left( x \right) + g\left( x \right)} \right]dx = \mathop \smallint \limits_a^b f\left( x \right)dx + \mathop \smallint \limits_a^b g\left( x \right)dx\], phân tích \[\mathop \smallint \limits_0^1 \left[ {2f\left( {1 - x} \right) - 3{x^2} + 5} \right]dx\]
- Tiếp tục đổi biến hoặc đưa biến vào vi phân, biểu diễn \[\mathop \smallint \limits_0^1 \left[ {2f\left( {1 - x} \right) - 3{x^2} + 5} \right]dx\] theo \[\mathop \smallint \limits_0^1 f\left( x \right)dx\] và tính.
Giải chi tiết:
Xét tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \sin 2x.f\left( {{{\cos }^2}x} \right)dx\].
Đặt .
Đổi cận: \[x = 0 \Rightarrow t = 1,{\mkern 1mu} {\mkern 1mu} x = \frac{\pi }{2} \Rightarrow t = 0\].
Khi đó ta có .
Ta có:
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 7:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
về câu hỏi!