Câu hỏi:
13/07/2024 513Quảng cáo
Trả lời:
Đáp án: 0
Phương pháp giải: Số điểm cực trị của đồ thị hàm số \[y = f\left( x \right)\] là số nghiệm bội lẻ của phương trình \[f'\left( x \right) = 0\].
Điểm \[x = {x_0}\] là điểm cực đại của hàm số \[y = f\left( x \right) \Leftrightarrow \] tại điểm \[x = {x_0}\] thì hàm số có \[y\prime \] đổi dấu từ dương sang âm.
Giải chi tiết:
Ta có: \[f'\left( x \right) = 0\]
\[\begin{array}{l} \Leftrightarrow \left( {{x^3} - 1} \right)\left( {{x^2} - 3x + 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{x^3} - 1 = 0\\{x^2} - 3x + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x^3} = 1\\\left( {x - 1} \right)\left( {x - 2} \right) = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x - 1 = 0\\x - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 1\\x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\end{array}\]
Ta thấy \[x = 1\] là nghiệm bội 4 của phương trình \[f\prime \left( x \right) = 0 \Rightarrow x = 1\] không là điểm cực trị của hàm số.
Ta có bảng xét dấu:
Ta thấy qua điểm \[x = 2\] thì \[f\prime \left( x \right)\;\]đổi dấu từ âm sang dương nên \[x = 2\] là điểm cực tiểu của hàm số.
⇒ Hàm số không có điểm cực đại.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải: - Gọi \({u_n}\) là giá của mét khoan thứ n, chứng minh \({u_n}\) là 1 CSC.
- Sử dụng công thức tính tổng n số hạng đầu tiên của CSC: \({S_n}\, = \,\frac{{\left[ {2{u_1}\, + \,\left( {n - 1} \right)d} \right]\,n}}{2}\)
Giải chi tiết:
Gọi \({u_n}\) là giá của mét khoan thứ n, với \(1 \le n \le 20.\)
Theo giả thiết ta có \({u_1} = 100000\) và \({u_{n + 1}} = {u_n} + 30000\) với \(1 \le n \le 9.\)
Khi đó \(\left( {{u_n}} \right)\)là 1CSC có \({u_1} = 100000\) và công sai \(d = 30000\).
Vậy tổng số tiền gia đình đó phải thanh toán cho cơ sở khoan giếng là:
\({S_{20}} = \frac{{\left( {2{u_1} + 19d} \right).20}}{2} = \frac{{\left( {2.100000 + 19.30000} \right).20}}{2} = 7700000\) (đồng)
Chọn A.
Lời giải
Phương pháp giải: Phân tích các phương án.
Giải chi tiết:
A chọn vì trong lý luận giải phóng dân tộc của Nguyễn Ái Quốc được truyền bá vào Việt Nam trong những năm 1921-1929, Nguyễn Ái Quốc đã chỉ rõ chiến lược và sách lược của cách mạng Việt Nam. Trong đó nêu rõ gắn liền độc lập dân tộc với chủ nghĩa xã hội.
B loại vì chỉ nêu giải phóng dân tộc là chưa đầy đủ và đây cũng không phải là điểm mới.
C loại vì nội dung của phương án này không phải là điểm mới
D loại vì Nguyễn Ái Quốc không nêu độc lập gắn với khôi phục chế độ quân chủ.
Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận