Câu hỏi:
12/07/2024 5,274Cho \(a\,,\,b\)là các số nguyên và . Tính \(P\, = \,{a^2}\, + \,{b^2}\, - \,a\, - \,b\).
Quảng cáo
Trả lời:
Đáp án: P = 320
Phương pháp giải: - Chia tử cho mẫu
- Sử dụng công thức \(\mathop {\lim }\limits_{x \to a} \left( {f(x) + g(x)} \right) = \mathop {\lim }\limits_{x \to a} f(x) + \mathop {\lim }\limits_{x \to a} f(x)\), lập hệ phương trình và giải hệ tìm a,b
- Thay giá trị a, b tìm được để tính giá trị biểu thức P
Giải chi tiết:
Ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \frac{{a{x^2} + bx - 5}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{a({x^2} - 1)\, + \,b(x - 1)\, + \,a\, + \,b\, - \,5}}{{x\, - \,1}}\\ = \mathop {\lim }\limits_{x \to 1} \left[ {a(x + 1) + b} \right]\,\, + \mathop {\,\lim }\limits_{x \to 1} \frac{{a\, + \,b\, - \,5}}{{x\, - \,1}}\\ = 2a\, + \,b\, + \,\mathop {\lim }\limits_{x \to 1} \frac{{a\, + \,b\, - \,5}}{{x\, - \,1}}\end{array}\)
Theo đề bài ta có:
\(\mathop {\lim }\limits_{x \to 1} \frac{{a{x^2}\, + \,bx\, - \,5}}{{x\, - \,1}}\, = \,20\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2a\, + \,b\, = \,20}\\{a\, + \,b\, - \,5\, = \,0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a\, = \,15}\\{b\, = \, - 10}\end{array}} \right.\)
Vậy
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 8)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận