Câu hỏi:

24/05/2022 4,142

Giá trị của tham số m để phương trình \({4^x} - \left( {2m + 3} \right){2^x} + 64 = 0\) có hai nghiệm thực \({x_1},{x_2}\) thỏa mãn \(\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) = 24\) thuộc khoảng nào sau đây?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Đặt \({2^x} = t > 0\). Theo hệ thức Vi-ét ta có \({2^{{x_1}}}{.2^{{x_2}}} = 64 \Rightarrow {2^{{x_1} + {x_2}}} = {2^6} \Rightarrow {x_1} + {x_2} = 6\).

Giả thiết tương đương \({x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right) = 20 \Rightarrow {x_1}{x_2} = 8 \Rightarrow \left\{ \begin{array}{l}{x_1} + {x_2} = 6\\{x_1}{x_2} = 2\end{array} \right. \Rightarrow \left( {{x_1};{x_2}} \right) = \left( {2;4} \right),\left( {4;2} \right)\).

\( \Rightarrow \left( {{t_1};{t_2}} \right) = \left( {4;16} \right),\left( {16;4} \right) \Rightarrow {t_1} + {t_2} = 20 \Rightarrow 2m + 3 = 20 \Rightarrow m = 8,5\)

Ta chỉ có \({2^{{x_1}}}{.2^{{x_2}}} = {2^{{x_1} + {x_2}}}\), vì thế nếu quy các mũ này theo tích \({x_1},{x_2}\) là không thể, biểu thị theo logarit cũng không ổn. Khi đó hãy nhớ đến hệ phương trình ẩn \({x_1},{x_2}\) như trên.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1;0;3} \right),B\left( {2;3; - 4} \right),C\left( { - 3;1;2} \right)\). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Xem đáp án » 24/05/2022 42,986

Câu 2:

Trong không gian với hệ tộa độ Oxyz, cho hai điểm \(A\left( {0;1; - 2} \right)\)\(B\left( {3; - 1;1} \right)\). Tìm tọa độ của điểm M sao cho AM=3AB

Xem đáp án » 24/05/2022 16,007

Câu 3:

Cho \02fxdx=302gxdx=7, khi đó 02fx+3gxdx bằng

Xem đáp án » 24/05/2022 15,984

Câu 4:

Số nghiệm của phương trình \({\log _2}x = 3 - 2{\log _2}\left( {x - 4} \right)\)

Xem đáp án » 24/05/2022 6,444

Câu 5:

Cho hàm số \[y = f\left( x \right)\] có đạo hàm, nhận giá trị dương trên \(\left( {0; + \infty } \right)\) và thỏa mãn \(2f'\left( {{x^2}} \right) = 9{\rm{x}}\sqrt {f\left( {{x^2}} \right)} \) với mọi \(x \in \left( {0; + \infty } \right)\). Biết \(f\left( {\frac{2}{3}} \right) = \frac{2}{3}\), tính giá trị \(f\left( {\frac{1}{3}} \right)\).

Xem đáp án » 24/05/2022 6,437

Câu 6:

Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) và thỏa mãn A=012x+1f'xdx=10, \(3f\left( 1 \right) - f\left( 0 \right) = 12\). Tính \(I = \int\limits_0^1 {f\left( x \right)d{\rm{x}}} \).

Xem đáp án » 24/05/2022 5,330

Câu 7:

Cho hàm số \(f\left( x \right) = \ln \left( {{x^4} + 1} \right)\). Đạo hàm \(f'\left( 1 \right)\) bằng

Xem đáp án » 24/05/2022 5,163
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua