Câu hỏi:
24/05/2022 3,660Giá trị của tham số m để phương trình \({4^x} - \left( {2m + 3} \right){2^x} + 64 = 0\) có hai nghiệm thực \({x_1},{x_2}\) thỏa mãn \(\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) = 24\) thuộc khoảng nào sau đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Đặt \({2^x} = t > 0\). Theo hệ thức Vi-ét ta có \({2^{{x_1}}}{.2^{{x_2}}} = 64 \Rightarrow {2^{{x_1} + {x_2}}} = {2^6} \Rightarrow {x_1} + {x_2} = 6\).
Giả thiết tương đương \({x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right) = 20 \Rightarrow {x_1}{x_2} = 8 \Rightarrow \left\{ \begin{array}{l}{x_1} + {x_2} = 6\\{x_1}{x_2} = 2\end{array} \right. \Rightarrow \left( {{x_1};{x_2}} \right) = \left( {2;4} \right),\left( {4;2} \right)\).
\( \Rightarrow \left( {{t_1};{t_2}} \right) = \left( {4;16} \right),\left( {16;4} \right) \Rightarrow {t_1} + {t_2} = 20 \Rightarrow 2m + 3 = 20 \Rightarrow m = 8,5\)
Ta chỉ có \({2^{{x_1}}}{.2^{{x_2}}} = {2^{{x_1} + {x_2}}}\), vì thế nếu quy các mũ này theo tích \({x_1},{x_2}\) là không thể, biểu thị theo logarit cũng không ổn. Khi đó hãy nhớ đến hệ phương trình ẩn \({x_1},{x_2}\) như trên.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1;0;3} \right),B\left( {2;3; - 4} \right),C\left( { - 3;1;2} \right)\). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
Câu 3:
Trong không gian với hệ tộa độ Oxyz, cho hai điểm \(A\left( {0;1; - 2} \right)\) và \(B\left( {3; - 1;1} \right)\). Tìm tọa độ của điểm M sao cho
Câu 4:
Cho hàm số \[y = f\left( x \right)\] có đạo hàm, nhận giá trị dương trên \(\left( {0; + \infty } \right)\) và thỏa mãn \(2f'\left( {{x^2}} \right) = 9{\rm{x}}\sqrt {f\left( {{x^2}} \right)} \) với mọi \(x \in \left( {0; + \infty } \right)\). Biết \(f\left( {\frac{2}{3}} \right) = \frac{2}{3}\), tính giá trị \(f\left( {\frac{1}{3}} \right)\).
Câu 5:
Số nghiệm của phương trình \({\log _2}x = 3 - 2{\log _2}\left( {x - 4} \right)\) là
Câu 6:
Cho hàm số \(f\left( x \right) = \ln \left( {{x^4} + 1} \right)\). Đạo hàm \(f'\left( 1 \right)\) bằng
Câu 7:
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) và thỏa mãn , \(3f\left( 1 \right) - f\left( 0 \right) = 12\). Tính \(I = \int\limits_0^1 {f\left( x \right)d{\rm{x}}} \).
về câu hỏi!