Câu hỏi:

24/05/2022 401

Cho khối nón (N) đỉnh S, có chiều cao là \(a\sqrt 3 \) và độ dài đường sinh là 3a. Mặt phẳng (P) đi qua đỉnh S, cắt và tạo với mặt đáy một khối nón một góc \(60^\circ \). Tính diện tích thiết diện tạo bởi mặt phẳng (P) và khối nón (N).

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Cho khối nón (N) đỉnh S, có chiều cao là a căn bậc hai của 3  và độ dài đường sinh là 3a (ảnh 1)

Khối nón (N) có tâm đáy là O, chiều cao \(SO = h = a\sqrt 3 \) và độ dài đường sinh \(\ell  = 3{\rm{a}}\).

Giả sử mặt phẳng (P) cắt (N) theo thiết diện là tam giác SAB.

Do \(SA = SB = \ell  \Rightarrow \Delta SAB\) cân tại đỉnh S.

Gọi I là trung điểm của AB. Ta có: \(OI \bot AB,SI \bot AB\) và khi đó góc giữa mặt phẳng (P) và mặt đáy (N) là góc \(\widehat {SI{\rm{O}}} = 60^\circ \).

Trong tam giác SOI vuông tại O góc \(\widehat {SI{\rm{O}}} = 60^\circ \).

Ta có: \(SI = \frac{{SO}}{{\sin SIO}} = \frac{{a\sqrt 3 }}{{\sin 60^\circ }} = 2a\).

Trong tam giác SIA ta có: \(I{A^2} = S{A^2} - S{I^2} = 5{{\rm{a}}^2} \Rightarrow IA = a\sqrt 5 \).

\(AB = 2IA = 2{\rm{a}}\sqrt 5 \). Vậy diện tích thiết diện cần tìm là:

\({S_{t{\rm{d}}}} = {S_{SAB}} = \frac{1}{2}SI.AB = 2{{\rm{a}}^2}\sqrt 5 \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1;0;3} \right),B\left( {2;3; - 4} \right),C\left( { - 3;1;2} \right)\). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Xem đáp án » 24/05/2022 42,988

Câu 2:

Trong không gian với hệ tộa độ Oxyz, cho hai điểm \(A\left( {0;1; - 2} \right)\)\(B\left( {3; - 1;1} \right)\). Tìm tọa độ của điểm M sao cho AM=3AB

Xem đáp án » 24/05/2022 16,007

Câu 3:

Cho \02fxdx=302gxdx=7, khi đó 02fx+3gxdx bằng

Xem đáp án » 24/05/2022 15,985

Câu 4:

Số nghiệm của phương trình \({\log _2}x = 3 - 2{\log _2}\left( {x - 4} \right)\)

Xem đáp án » 24/05/2022 6,444

Câu 5:

Cho hàm số \[y = f\left( x \right)\] có đạo hàm, nhận giá trị dương trên \(\left( {0; + \infty } \right)\) và thỏa mãn \(2f'\left( {{x^2}} \right) = 9{\rm{x}}\sqrt {f\left( {{x^2}} \right)} \) với mọi \(x \in \left( {0; + \infty } \right)\). Biết \(f\left( {\frac{2}{3}} \right) = \frac{2}{3}\), tính giá trị \(f\left( {\frac{1}{3}} \right)\).

Xem đáp án » 24/05/2022 6,437

Câu 6:

Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) và thỏa mãn A=012x+1f'xdx=10, \(3f\left( 1 \right) - f\left( 0 \right) = 12\). Tính \(I = \int\limits_0^1 {f\left( x \right)d{\rm{x}}} \).

Xem đáp án » 24/05/2022 5,330

Câu 7:

Cho hàm số \(f\left( x \right) = \ln \left( {{x^4} + 1} \right)\). Đạo hàm \(f'\left( 1 \right)\) bằng

Xem đáp án » 24/05/2022 5,163
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua