Câu hỏi:

24/05/2022 352 Lưu

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và hàm \[y = f'\left( x \right)\] có đồ thị như hình vẽ. Trên đoạn \(\left[ { - 3;4} \right]\) hàm số \(g\left( x \right) = f\left( {\frac{x}{2} + 1} \right) - \ln \left( {{x^2} + 8{\rm{x}} + 16} \right)\) có bao nhiêu điểm cực trị?

Cho hàm số  y=f(x) có đạo hàm trên  R và hàm y=f'(x)  có đồ thị như hình vẽ.  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Ta có \(g\left( x \right) = f\left( {\frac{x}{2} + 1} \right) - \ln {\left( {x + 4} \right)^2} = f\left( {\frac{x}{2} + 1} \right) - 2\ln \left( {x + 4} \right){\rm{ }}\left( {x \in \left[ { - 3;4} \right]} \right)\).

\(g'\left( x \right) = \frac{1}{2}f'\left( {\frac{x}{2} + 1} \right) - \frac{2}{{x + 4}};{\rm{ g'}}\left( x \right) = 0 \Leftrightarrow f'\left( {\frac{x}{2} + 1} \right) = \frac{4}{{x + 4}}\).

Đặt \(\frac{x}{2} + 1 = t \Rightarrow x = 2t - 2\), khi đó phương trình có dạng \(f'\left( t \right) = \frac{2}{{t + 1}}/\left[ { - \frac{1}{2};3} \right]\) (*):

Cho hàm số  y=f(x) có đạo hàm trên  R và hàm y=f'(x)  có đồ thị như hình vẽ.  (ảnh 2)

Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {\frac{x}{2} + 1} \right) - \ln \left( {{x^2} + 8{\rm{x}} + 16} \right)\) là số nghiệm đơn (hay bội lẻ) của phương trình (*) trên \(\left[ { - \frac{1}{2};3} \right]\). Từ đồ thị hàm số trên ta suy ra hàm số có 3 điểm cực trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Xét Dx;y;zAD=BCx1=5y=2z3=6D4;2;9

Câu 2

Lời giải

Đáp án A

Xét Mx;y;zAM=x;y1;z+2AB=3;2;3AM=3ABx=3.3y1=3.2z+2=3.3M9;5;7

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP