Câu hỏi:
24/05/2022 233Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và hàm \[y = f'\left( x \right)\] có đồ thị như hình vẽ. Trên đoạn \(\left[ { - 3;4} \right]\) hàm số \(g\left( x \right) = f\left( {\frac{x}{2} + 1} \right) - \ln \left( {{x^2} + 8{\rm{x}} + 16} \right)\) có bao nhiêu điểm cực trị?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Ta có \(g\left( x \right) = f\left( {\frac{x}{2} + 1} \right) - \ln {\left( {x + 4} \right)^2} = f\left( {\frac{x}{2} + 1} \right) - 2\ln \left( {x + 4} \right){\rm{ }}\left( {x \in \left[ { - 3;4} \right]} \right)\).
\(g'\left( x \right) = \frac{1}{2}f'\left( {\frac{x}{2} + 1} \right) - \frac{2}{{x + 4}};{\rm{ g'}}\left( x \right) = 0 \Leftrightarrow f'\left( {\frac{x}{2} + 1} \right) = \frac{4}{{x + 4}}\).
Đặt \(\frac{x}{2} + 1 = t \Rightarrow x = 2t - 2\), khi đó phương trình có dạng \(f'\left( t \right) = \frac{2}{{t + 1}}/\left[ { - \frac{1}{2};3} \right]\) (*):
Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {\frac{x}{2} + 1} \right) - \ln \left( {{x^2} + 8{\rm{x}} + 16} \right)\) là số nghiệm đơn (hay bội lẻ) của phương trình (*) trên \(\left[ { - \frac{1}{2};3} \right]\). Từ đồ thị hàm số trên ta suy ra hàm số có 3 điểm cực trị.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1;0;3} \right),B\left( {2;3; - 4} \right),C\left( { - 3;1;2} \right)\). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
Câu 3:
Trong không gian với hệ tộa độ Oxyz, cho hai điểm \(A\left( {0;1; - 2} \right)\) và \(B\left( {3; - 1;1} \right)\). Tìm tọa độ của điểm M sao cho
Câu 4:
Cho hàm số \[y = f\left( x \right)\] có đạo hàm, nhận giá trị dương trên \(\left( {0; + \infty } \right)\) và thỏa mãn \(2f'\left( {{x^2}} \right) = 9{\rm{x}}\sqrt {f\left( {{x^2}} \right)} \) với mọi \(x \in \left( {0; + \infty } \right)\). Biết \(f\left( {\frac{2}{3}} \right) = \frac{2}{3}\), tính giá trị \(f\left( {\frac{1}{3}} \right)\).
Câu 5:
Số nghiệm của phương trình \({\log _2}x = 3 - 2{\log _2}\left( {x - 4} \right)\) là
Câu 6:
Cho hàm số \(f\left( x \right) = \ln \left( {{x^4} + 1} \right)\). Đạo hàm \(f'\left( 1 \right)\) bằng
Câu 7:
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) và thỏa mãn , \(3f\left( 1 \right) - f\left( 0 \right) = 12\). Tính \(I = \int\limits_0^1 {f\left( x \right)d{\rm{x}}} \).
về câu hỏi!