Câu hỏi:
24/05/2022 919Cho a, b, c là các số thực khác 0 thỏa mãn \({6^a} = {9^b} = {24^c}\). Tính \(T = \frac{a}{b} + \frac{a}{c}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Đặt \(t = {6^a} = {9^b} = {24^c},\left( {0 < t \ne 1} \right)\).
\( \Rightarrow \left\{ \begin{array}{l}a = {\log _6}t\\b = {\log _9}t\\c = {\log _{24}}t\end{array} \right.\).
\[ \Rightarrow T = \frac{{{{\log }_6}t}}{{{{\log }_9}t}} + \frac{{{{\log }_6}t}}{{{{\log }_{24}}t}} = {\rm{ }}\frac{{{{\log }_t}9}}{{{{\log }_t}6}} + \frac{{{{\log }_t}24}}{{{{\log }_t}6}} = {\log _6}9 + {\log _6}24 = 3\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1;0;3} \right),B\left( {2;3; - 4} \right),C\left( { - 3;1;2} \right)\). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
Câu 3:
Trong không gian với hệ tộa độ Oxyz, cho hai điểm \(A\left( {0;1; - 2} \right)\) và \(B\left( {3; - 1;1} \right)\). Tìm tọa độ của điểm M sao cho
Câu 4:
Cho hàm số \[y = f\left( x \right)\] có đạo hàm, nhận giá trị dương trên \(\left( {0; + \infty } \right)\) và thỏa mãn \(2f'\left( {{x^2}} \right) = 9{\rm{x}}\sqrt {f\left( {{x^2}} \right)} \) với mọi \(x \in \left( {0; + \infty } \right)\). Biết \(f\left( {\frac{2}{3}} \right) = \frac{2}{3}\), tính giá trị \(f\left( {\frac{1}{3}} \right)\).
Câu 5:
Số nghiệm của phương trình \({\log _2}x = 3 - 2{\log _2}\left( {x - 4} \right)\) là
Câu 6:
Cho hàm số \(f\left( x \right) = \ln \left( {{x^4} + 1} \right)\). Đạo hàm \(f'\left( 1 \right)\) bằng
Câu 7:
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) và thỏa mãn , \(3f\left( 1 \right) - f\left( 0 \right) = 12\). Tính \(I = \int\limits_0^1 {f\left( x \right)d{\rm{x}}} \).
về câu hỏi!