Câu hỏi:

24/05/2022 479 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên sau.

Cho hàm số  y=f(x) có bảng biến thiên sau.   Tìm giá trị nhỏ nhất của hàm số  (ảnh 1)

Tìm giá trị nhỏ nhất của hàm số \(g\left( x \right) = f\left( {{x^3} - 3{\rm{x}}} \right) - \frac{1}{5}{x^5} + \frac{5}{3}{x^3} - 4{\rm{x}} - \frac{7}{{15}}\) trên đoạn \(\left[ { - 1;2} \right]\)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Ta có \(g'\left( x \right) = \left( {3{{\rm{x}}^2} - 3} \right)f'\left( {{x^3} - 3{\rm{x}}} \right) - {x^4} + 5{{\rm{x}}^2} - 4\)

\( = \left( {{x^2} - 1} \right)\left[ {3f'\left( {{x^3} - 3{\rm{x}}} \right) + 4 - {x^2}} \right]\).

Với \(x \in \left[ { - 1;2} \right] \Rightarrow {x^3} - 3{\rm{x}} \in \left[ { - 2;2} \right]\) nên \(f'\left( {{x^2} - 3{\rm{x}}} \right) > 0,\forall x \in \left[ { - 2;2} \right]\).

\(x \in \left[ { - 1;2} \right]\) thì \(4 - {x^2} \ge 0\) nên \(f'\left( {{x^3} - 3{\rm{x}}} \right) + 4 - {x^2} > 0,\forall x \in \left[ { - 1;2} \right]\).

Do đó g'x=0x21=0x=1x=1

Cho hàm số  y=f(x) có bảng biến thiên sau.   Tìm giá trị nhỏ nhất của hàm số  (ảnh 2)

Dựa vào bảng biến thiên, ta được min1;2gx=g1=f23=19

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Xét Dx;y;zAD=BCx1=5y=2z3=6D4;2;9

Câu 2

Lời giải

Đáp án A

Xét Mx;y;zAM=x;y1;z+2AB=3;2;3AM=3ABx=3.3y1=3.2z+2=3.3M9;5;7

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP