Câu hỏi:

25/05/2022 2,240 Lưu

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác đều. Cạnh \[AA' = a\sqrt 6 \] và khoảng cách từ điểm A đến mặt phẳng \[\left( {BCC'B'} \right)\] bằng \[a\sqrt 2 \]. Tính thể tích V của khối lăng trụ ABC.A’B’C’.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác đều. Cạnh AA'  (ảnh 1)

Kẻ \[AH \bot BC \Rightarrow d\left( {A;\left( {BCC'B'} \right)} \right) = AH \Rightarrow AH = a\sqrt 2 \].

\[\Delta ABC\] đều \[ \Rightarrow AH = \frac{{AB\sqrt 3 }}{2} \Rightarrow AB = \frac{{2a\sqrt 2 }}{{\sqrt 3 }}\].

\[ \Rightarrow V = AA'.{S_{ABC}} = AA'.\frac{{A{B^2}\sqrt 3 }}{4} = 2{a^3}\sqrt 2 \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án C

Điểm cần tìm là H với \[\left\{ \begin{array}{l}{x_H} = 0\\{y_H} = 0\\{z_H} = {z_M}\end{array} \right. \Rightarrow H\left( {0;0; - 3} \right)\].

Câu 2

Lời giải

Đáp án B

Ta có d:x=1+ty=1+t3tt

Giả sử \[\Delta \] đi qua A, vuông góc và cắt d tại \[M \Rightarrow M\left( {t + 1;t - 1;3 - t} \right)\].

Đường thẳng Δ nhận AM=t1;t+1;2t là một VTCP.

Đường thẳng d có một VTCP là u=1;1;1

Ta có ΔdAM.u=0t1+t+12t=0t=23AM=13;53;43

Đường thẳng \[\Delta \] nhận AM=13;53;43 là một VTCP nên nhận u'=1;5;4 là một VTCP.

Kết hợp với \[\Delta \] qua \[A\left( {2; - 2;1} \right) \Rightarrow \Delta :\frac{{x - 2}}{{ - 1}} = \frac{{y + 2}}{5} = \frac{{z - 1}}{4}\].

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP