Câu hỏi:

13/07/2024 3,293

Trong bài toán ứng dụng, khi chơi trên sân cầu lông đơn, các lần phát cầu với thông tin như sau có được cho là hợp lệ không? (Các thông tin không được đề cập thì vẫn giữ như trong giả thiết bài toán trên).

a) Vận tốc xuất phát của cầu là 12m/s.

b) Vị trí phát cầu cách mặt đất là 1,3m.

Lưu ý: Các thông số về sân cầu lông được cho trong Hình 11.

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có hình vẽ sau

Media VietJack

a) Theo đề bài, ta có:

g ≈ 9,8 m/s2, α = 30°, v0 = 12m/s, y0 = 0,7 m.

Khi đó, ta có hàm số: y = 491080x2+33x+0,7.

Khi cầu bay tới vị trí lưới phân cách, nếu nó ở bên trên mặt lưới và điểm rơi không ra khỏi đường biên phía bên sân đối phương thì lần phát cầu mới được xem là hợp lệ.

Ta cần so sánh tung độ của điểm quỹ đạo (có hoành độ bằng khoảng cách từ gốc tọa độ đến chân lưới phân cách) với chiều cao mép lưới.

Khi x = 4 (do người đứng cách lưới 4m) ta có:

y =491080.42+33.4+0,72,28>1,524.

Như vậy lần phát cầu này thỏa mãn qua lưới.

Vị trí cầu rơi chạm đất là giao điểm của Parabol với trục hoành nên giải phương trình:

491080x2+33x+0,7=0 ta được x1 ≈ 13,84 và x2 ≈ -1,11.

Giá trị nghiệm dương cho ta khoảng cách từ vị trí người chơi cầu lông đến vị trí cầu rơi chạm đất là 13,84m.

Ta có:

Điểm bên trong sẽ cách vị trí phát: 4 + 1,98 = 5, 98m.

Điểm bên ngoài sẽ cách vị trí phát: 4 + 6,7 = 10,7 m.

Do vị trí điểm rơi nằm ngoài khoảng giữa điểm trong và điểm ngoài nên lần phát cầu này hỏng.

Vậy với vận tốc xuất phát của cầu là 12m/s thì lần phát này hỏng (không hợp lệ).

b) Theo đề bài, ta có:

g ≈ 9,8 m/s2, α = 30°, v0 = 8m/s, y0 = 1,3 m.

Khi đó, ta có hàm số: y = 49480x2+33x+1,3.

Khi cầu bay tới vị trí lưới phân cách, nếu nó ở bên trên mặt lưới và điểm rơi không ra khỏi đường biên phía bên sân đối phương thì lần phát cầu mới được xem là hợp lệ.

Ta cần so sánh tung độ của điểm quỹ đạo (có hoành độ bằng khoảng cách từ gốc tọa độ đến chân lưới phân cách) với chiều cao mép lưới.

Khi x = 4 (do người đứng cách lưới 4m) ta có:

y =49480.42+33.4+1,31,98>1,524.

Như vậy lần phát cầu này thỏa mãn qua lưới.

Vị trí cầu rơi chạm đất là giao điểm của Parabol với trục hoành nên giải phương trình:

49480x2+33x+1,3=0 ta được x1 ≈ 7,38 và x2 ≈ -1,73.

Giá trị nghiệm dương cho ta khoảng cách từ vị trí người chơi cầu lông đến vị trí cầu rơi chạm đất là 7,38m.

Ta có:

Điểm bên trong sẽ cách vị trí phát: 4 + 1,98 = 5, 98m.

Điểm bên ngoài sẽ cách vị trí phát: 4 + 6,7 = 10,7 m.

Do vị trí điểm rơi nằm trong khoảng giữa điểm trong và điểm ngoài nên lần phát cầu này hợp lệ.

Vậy với vị trí phát cầu cách mặt đất 1,3m thì lần phát cầu này hợp lệ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số y = 2x2 + x + m có a = 2, b = 1 và c = m.

Điểm đỉnh S có tọa độ xS = b2a=12.2=14, yS = 2.142+14+m=m18.

Hàm số có a = 2 > 0 nên giá trị nhỏ nhất của hàm số là m – 18.

Mà giá trị nhỏ nhất bằng 5 nên m – 18 = 5 m = 418.

Vậy với m = 418 thì giá trị nhỏ nhất của hàm số là 5.

Lời giải

Ta có:

f(0) = a.02 + b.0 + c = 1 c = 1.

f(1) = a.12 + b.1 + c = 2 a + b + c = 2.

f(2) = a.22 + b.2 + c = 5  4a + 2b + c = 5.

Khi đó, ta có hệ phương trình: c=1a+b+c=24a+2b+c=5c=1a+b=14a+2b=4c=1a+b=12a+b=2c=1a=1b=0

Vậy a = 1, b = 0 và c = 1.

b) Với a = 1, b = 0 và c = 1 thì ta có hàm số: y = x2 + 1.

Xét hàm số bậc hai: y = x2 + 1, có:

Đỉnh S có tọa độ xs = b2a=02.1=0, ys = 02 + 1 = 1. Hay S(0; 1).

Vì hàm số bậc hai có a = 1 > 0 nên ta có bảng biến thiên sau:

Media VietJack

Dựa vào bảng biến thiên ta có:

Hàm số có giá trị nhỏ nhất bằng 1 khi x = 0. Do đó tập giá trị của hàm số là [1; +∞).

Hàm số nghịch biến trên khoảng (-∞;0) và đồng biến trên khoảng (0; +∞).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP