Câu hỏi:
13/07/2024 1,827Trong bài toán ứng dụng, khi chơi trên sân cầu lông đơn, các lần phát cầu với thông tin như sau có được cho là hợp lệ không? (Các thông tin không được đề cập thì vẫn giữ như trong giả thiết bài toán trên).
a) Vận tốc xuất phát của cầu là 12m/s.
b) Vị trí phát cầu cách mặt đất là 1,3m.
Lưu ý: Các thông số về sân cầu lông được cho trong Hình 11.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có hình vẽ sau
a) Theo đề bài, ta có:
g ≈ 9,8 m/s2, α = 30°, v0 = 12m/s, y0 = 0,7 m.
Khi đó, ta có hàm số: y = .
Khi cầu bay tới vị trí lưới phân cách, nếu nó ở bên trên mặt lưới và điểm rơi không ra khỏi đường biên phía bên sân đối phương thì lần phát cầu mới được xem là hợp lệ.
Ta cần so sánh tung độ của điểm quỹ đạo (có hoành độ bằng khoảng cách từ gốc tọa độ đến chân lưới phân cách) với chiều cao mép lưới.
Khi x = 4 (do người đứng cách lưới 4m) ta có:
y =.
Như vậy lần phát cầu này thỏa mãn qua lưới.
Vị trí cầu rơi chạm đất là giao điểm của Parabol với trục hoành nên giải phương trình:
ta được x1 ≈ 13,84 và x2 ≈ -1,11.
Giá trị nghiệm dương cho ta khoảng cách từ vị trí người chơi cầu lông đến vị trí cầu rơi chạm đất là 13,84m.
Ta có:
Điểm bên trong sẽ cách vị trí phát: 4 + 1,98 = 5, 98m.
Điểm bên ngoài sẽ cách vị trí phát: 4 + 6,7 = 10,7 m.
Do vị trí điểm rơi nằm ngoài khoảng giữa điểm trong và điểm ngoài nên lần phát cầu này hỏng.
Vậy với vận tốc xuất phát của cầu là 12m/s thì lần phát này hỏng (không hợp lệ).
b) Theo đề bài, ta có:
g ≈ 9,8 m/s2, α = 30°, v0 = 8m/s, y0 = 1,3 m.
Khi đó, ta có hàm số: y = .
Khi cầu bay tới vị trí lưới phân cách, nếu nó ở bên trên mặt lưới và điểm rơi không ra khỏi đường biên phía bên sân đối phương thì lần phát cầu mới được xem là hợp lệ.
Ta cần so sánh tung độ của điểm quỹ đạo (có hoành độ bằng khoảng cách từ gốc tọa độ đến chân lưới phân cách) với chiều cao mép lưới.
Khi x = 4 (do người đứng cách lưới 4m) ta có:
y =.
Như vậy lần phát cầu này thỏa mãn qua lưới.
Vị trí cầu rơi chạm đất là giao điểm của Parabol với trục hoành nên giải phương trình:
ta được x1 ≈ 7,38 và x2 ≈ -1,73.
Giá trị nghiệm dương cho ta khoảng cách từ vị trí người chơi cầu lông đến vị trí cầu rơi chạm đất là 7,38m.
Ta có:
Điểm bên trong sẽ cách vị trí phát: 4 + 1,98 = 5, 98m.
Điểm bên ngoài sẽ cách vị trí phát: 4 + 6,7 = 10,7 m.
Do vị trí điểm rơi nằm trong khoảng giữa điểm trong và điểm ngoài nên lần phát cầu này hợp lệ.
Vậy với vị trí phát cầu cách mặt đất 1,3m thì lần phát cầu này hợp lệ.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = 2x2 + x + m. Hãy xác định giá trị của m để hàm số đạt giá trị nhỏ nhất bằng 5.
Câu 3:
Cho hàm số bậc hai y = f(x) = ax2 + bx + c có f(0) = 1, f(1) = 2, f(2) = 5.
a) Hãy xác định giá trị của các hệ số a, b, c.
b) Xác định tập giá trị và khoảng biến thiên của hàm số.
Câu 4:
Vẽ đồ thị các hàm số sau:
a) y = 2x2 + 4x – 1;
b) y = -x2 + 2x + 3;
c) y = -3x2 + 6x;
d) y = 2x2 – 5.
Câu 5:
Lập bảng biến thiên của hàm số y = x2 + 2x + 3. Hàm số này có giá trị lớn nhất hay nhỏ nhất? Tìm giá trị đó.
Câu 6:
Hãy xác định đúng đồ thị của mỗi hàm số sau trên Hình 12.
(P1): y = - 2x2 – 4x + 2;
(P2): y = 3x2 – 6x + 5;
(P3): y = 4x2 – 8x + 7;
(P4): y = -3x2 – 6x + 1.
Câu 7:
Hàm số nào sau đây là hàm số bậc hai?
a) y = 9x2 + 5x + 4;
b) y = 3x3 + 2x + 1;
c) y = -4(x + 2)3 + 2(2x3 + 1) + 5;
d) y = 5x2 + + 2.
về câu hỏi!