Câu hỏi:

02/06/2022 666

Cho hàm số  có đồ thị như hình vẽ. Gọi S là tập hợp các giá trị của tham số m để bất phương trình xm2fsinx+2.2fsinx+m23.2fx10  nghiệm đúng với mọi x . Số tập con của tập hợp S

Cho hàm số y=f(x)  có đồ thị như hình vẽ. Gọi S là tập hợp các giá trị của tham số m để bất phương trình [x(m-2^f(sinx))+2.2^f(sinx)+m^2-3].(2^f(x)-1)>=0  nghiệm đúng với mọi  . Số tập con của tập hợp S là (ảnh 1)

 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Nhận xét phương trình 2fx1=0  có một nghiệm đơn  nên biểu thức sẽ đổi dấu khi đi qua điểm x=2  .

Do đó để bất phương trình nghiệm đúng với mọi x  thì phương trình

xm2fsinx+2.2fsinx+m23=0 phải có một nghiệm.

Thử lại với m=1 ta có:

x12fsinx+2.2fsinx22fx10x212fsinx2fx10.

 2fsinx1fsinx0sinx2luôn đúng với mọi  thỏa mãn yêu cầu bài toán.

Thử lại với m=-3 ta có:

x32fsinx+2.2fsinx+62fx10x23+2fsinx2fx10 (vô lý) m=-3 không thỏa mãn yêu cầu bài toán.

Vậy S=1 . Số tập con của S là 2 đó 1   .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Đặt gx=fx2+2x+3g'x=2x+1f'x2+2x+3 .

Do x2+2x+3=x+12+22  và đồ thị hàm số y=f'x   ta có:

g'x=0x+1=0f'x2+2x+3=0x=1x2+2x+3=3x=1x=0x=2.

Ta có bảng xét dấu g'(x) như sau

Cho hàm số y=f'(x)  liên tục trên R  và có đồ thị như hình vẽ bên. Hàm số y=f(x^2+2x+3)  nghịch biến trên khoảng nào dưới đây? (ảnh 2)

Suy ra hàm số y=fx2+2x+3  nghịch biến trên mỗi khoảng 2;1  0;+  nên chọn D.

Lời giải

Đáp án C

Chọn hệ trục tọa độ như hình vẽ. Do AB=2m,IA=IB=5m  JA=JB=132m .

Nên ta có: I0;0,A1;2,B1;2,J0;12 ; phương trình Parabol là y=2x2 , đường thẳng JB  y=32x+12.

Gọi K là tâm của hình tròn KB=KI=rK0;54,r=54  .

Phần diện tích dát bạc là: S1=20132x+122x2dx=76m2 .

Phần diện tích phủ sơn là: S2=πr2S13,73m2 .

Tổng số tiền dát bạc và phủ sơn của logo nói trên là:

76.10000000+3,73.2000000=19127000 đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay