Câu hỏi:

13/07/2024 809

1) Giải hệ phương trình: \[\left\{ \begin{array}{l}{x^2} - {y^2} + 3 = 0\\x + y = 1\end{array} \right.\].

2) Giải phương trình: \[{x^3} - 2{x^2} - 4x = 0\].

3) Cho phương trình \[{x^2} + 2\left( {m - 2} \right)x + {m^2} - 2x + 4 = 0\]. Tìm m để phương trình có 2 nghiệm thực phân biệt \[{x_1},\,\,{x_2}\] thỏa mãn \[\frac{2}{{x_1^2 + x_2^2}} - \frac{1}{{{x_1}{x_2}}} = \frac{1}{{15m}}\]?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Hệ phương trình tương đương với: \[\left\{ \begin{array}{l}\left( {x - y} \right)\left( {x + y} \right) = - 3\\x + y = 1\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}x - y = - 3\\x + y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x = - 2\\2y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = 2\end{array} \right.\].

Vậy hệ phương trình có nghiệm là: \[\left( {x;\,\,y} \right) = \left( { - 1;\,\,2} \right)\]

2) Phương trình tương đương với: \[x\left( {{x^2} - 2x - 4} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 2x - 4\,\,\left( * \right)\end{array} \right.\]

Giải (*), ta có \[\Delta ' = {\left( { - 1} \right)^2} - 1.\left( { - 4} \right) = 5 \Rightarrow \sqrt {\Delta '} = \sqrt 5 \].

Phương trình (*) có nghiệm là: \[\left[ \begin{array}{l}x = \frac{{ - \left( { - 1} \right) + \sqrt 5 }}{1} = 1 + \sqrt 5 \\x = \frac{{ - \left( { - 1} \right) - \sqrt 5 }}{1} = 1 - \sqrt 5 \end{array} \right.\]

 

Vậy phương trình có nghiệm là: \[x = 0;\,\,x = 1 \pm \sqrt 5 \]

3) Phương trình đã cho có 2 nghiệm phân biệt khi \[\Delta ' > 0\]

\[ \Leftrightarrow {\left( {m - 2} \right)^2} - \left( {{m^2} - 2x + 4} \right) > 0 \Leftrightarrow m < 0\]     (*)

Với \[m < 0\] theo định lý Vi-et, ta có: \[\left\{ \begin{array}{l}{x_1} + {x_2} = 4 - 2m\\{x_1}{x_2} = {m^2} - 2m + 4\end{array} \right.\].

Ta có: \[\frac{2}{{x_1^2 + x_2^2}} - \frac{1}{{{x_1}{x_2}}} = \frac{1}{{15m}} \Leftrightarrow \frac{2}{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}}} - \frac{1}{{{x_1}{x_2}}} = \frac{1}{{15m}}\]          (1)

\[ \Leftrightarrow \frac{1}{{m + \frac{4}{m} - 6}} - \frac{1}{{m + \frac{4}{m} - 2}} = \frac{1}{{15}}\]

Đặt \[t = m + \frac{4}{m}\] do \[m < 0 \Rightarrow t < 0\].

Ta có (1) trở thành: \[\frac{1}{{t - 6}} - \frac{1}{{t - 2}} = \frac{1}{{15}} \Leftrightarrow \left[ \begin{array}{l}t = - 4\\t = 12\,\,\left( l \right)\end{array} \right.\]

Với \[t = - 4 \Leftrightarrow m + \frac{4}{m} = - 4 \Leftrightarrow m = - 2\] (thỏa mãn (*)).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) (ảnh 1)

1) AD,BE là đường cao của ∆ABC nên \[\widehat {CEH} = \widehat {HDC} = 90^\circ \]

\[ \Rightarrow \widehat {CEH} + \widehat {HDC} = 180^\circ \]

Suy ra tức giác CEHD là tứ giác nội tiếp (điều cần chứng minh)

Nhận xét: Bài toán chứng minh tứ giác nội tiếp bằng cách chứng minh tổng hai góc đối diện bằng \[180^\circ \]

Tứ giác CEHD có tổng cặp góc đối diện bằng \[180^\circ \]: \[\widehat {CEH} + \widehat {HDC} = 180^\circ \] nên là tứ giác nội tiếp.

2) CF, BE là đường cao của ∆ABC nên \[\widehat {CEB} = \widehat {BFC} = 90^\circ \]

=> Điểm E, F thuộc đường tròn đường kính BC.

=> B, C, E, F cùng nằm trên đường tròn đường kính BC (điều cần chứng minh).

Nhận xét: Bài toán chứng minh bốn điểm cùng nằm trên một đường tròn bằng cách chứng minh hai điểm nhìn một cạnh tạo bởi hai điểm còn lại cùng dưới một góc vuông.

 3) Tam giác AEH và ADH có chung góc tại đỉnh A và \[\widehat {AEH} = \widehat {ADC} = 90^\circ \] nên ∆AEH đồng dạng với ∆ADC \[ \Rightarrow \frac{{AE}}{{AD}} = \frac{{AH}}{{AC}} \Rightarrow AE.AC = AH.AD\] (điều cần chứng minh).

Tam giác BEC và ADC có chung góc tại đỉnh C và \[\widehat {BEC} = \widehat {ADC} = 90^\circ \] nên ∆BEC ∆ADC

\[ \Rightarrow \frac{{BE}}{{AD}} = \frac{{BC}}{{AC}} \Rightarrow AD.BC = CE.AC\] (điều cần chứng minh).

Nhận xét:  Bài toán chứng minh các đẳng thức bằng cách chứng minh các cặp tam giác đồng dạng.

 4) Ta có:

\[\widehat {{A_1}} = \widehat {{C_1}}\] (cùng phụ với \[\widehat {FBC}\]);

\[\widehat {{A_1}} = \widehat {{C_2}}\] (cùng chắn cung của (O));

Suy ra \[\widehat {{C_1}} = \widehat {{C_2}}\]

CD là phân giác của \[\widehat {HCM}\]

Tam giác CHM có CD vừa là phân giác vừa là đường cao nên cân tại C, suy ra CD đồng thời cũng la trung trực của HM.

H, M đối xứng với nhau qua BC (điều cần chứng minh).

5) Ta có:

\[\widehat {{E_1}} = \widehat {{C_1}}\] (cùng chắn cung trong đường tròn đi qua bốn điểm B, C, E, F);

\[\widehat {{C_1}} = \widehat {{E_2}}\] (cùng chắn cung trong đường tròn ngoại tiếp tứ giác CEHD);

Suy ra: \[\widehat {{E_1}} = \widehat {{E_2}}\]

EB là phân giác của \[\widehat {FED}\].

Chứng minh tương tự: FC là phân giác của \[\widehat {DFE}\]

\[FC \cap EB = \left\{ H \right\}\] nên H là tâm đường tròn nội tiếp tam giác DEF.

Lời giải

1) Gọi chữ số hàng chục là x.

Chữ số hàng đơn vị là y.

Vì tổng 2 chữ số là 9, nên ta có \[x + y = 9\]  (1)

Điều kiện: \[0 < x \le 9,\,\,x \in \mathbb{N}*\]\[0 \le y \le 9,\,\,y \in \mathbb{N}\]

Số đó là \[\overline {xy} = 10x + y\]

Số viết ngược lại là \[\overline {yx} = 10y + x\]

Vì thêm vào số đó 63 đơn vị thì được số mới viết theo thứ tự ngược lại số cũ, ta có

\[\overline {xy} + 63 = \overline {yx} \Rightarrow 10x + y + 63 = 10y + x \Leftrightarrow 9x - 9y = 63\]        (2)

Từ (1) và (2), ta có hệ phương trình

\[\left\{ \begin{array}{l}x + y = 9\\9x - 9y = - 63\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}x + y = 9\\x - y = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x = 2\\x + y = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 8\end{array} \right.\] (thỏa mãn điều kiện)

Vậy số cần tìm là 18.

Nhận xét: Giải bài toán bằng cách lập hệ phương trình từ mỗi quan hệ theo số theo đề bài đã cho từ những kiến thức về cấu tạo số, phép toán số học, …

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay