Câu hỏi:

13/07/2024 2,197

Rút gọn biểu thức sau:

    a) \[A = \left( {\sqrt {12}  - 2\sqrt 5 } \right)\sqrt 3  + \sqrt {60} .\]

    b) \[B = \frac{{\sqrt {4x} }}{{x - 3}}.\sqrt {\frac{{{x^2} - 6x + 9}}{x}} \,\]với 0 < x < 3.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \[A = \left( {\sqrt {12} - 2\sqrt 5 } \right)\sqrt 3 + \sqrt {60} = \sqrt {36} - 2\sqrt {15} + 2\sqrt {15} = \sqrt {36} = 6\]

b) Với 0 < x < 3 thì \[\left| {x - 3} \right| = 3 - x\]

    \[B = \frac{{\sqrt {4x} }}{{x - 3}}.\sqrt {\frac{{{x^2} - 6x + 9}}{x}} \, = \frac{{2\sqrt x }}{{x - 3}}.\sqrt {\frac{{{{\left( {x - 3} \right)}^2}}}{x}} = \frac{{ - 2\sqrt x }}{{3 - x}}.\frac{{\left| {x - 3} \right|}}{{\sqrt x }} = \frac{{ - 2\sqrt x \left( {3 - x} \right)}}{{\left( {3 - x} \right)\sqrt x }} = - 2\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 Media VietJack

    a) Ta có: \[\widehat {MOB} = {90^0}\] (do AB\[ \bot \]MN) và \[\widehat {MHB} = {90^0}\](do MH\[ \bot \]BC)

    Suy ra: \[\widehat {MOB} + \widehat {MHB} = {90^0} + {90^0} = {180^0}\]

    \[ \Rightarrow \]Tứ giác BOMH nội tiếp.

    b) ∆OMB vuông cân tại O nên \[\widehat {OBM} = \widehat {OMB}\]    (1)

    Tứ giác BOMH nội tiếp nên \[\widehat {OBM} = \widehat {OHM}\] (cùng chắn cung OM)

    \[\widehat {OMB} = \widehat {OHB}\] (cùng chắn cung OB)    (2)

    Từ (1) và (2) suy ra: \[\widehat {OHM} = \widehat {OHB}\]

      \[ \Rightarrow \] HO là tia phân giác của \[\widehat {MHB}\] \[ \Rightarrow \frac{{ME}}{{BE}} = \frac{{MH}}{{HB}}\] (3)

      Áp dụng hệ thức lượng trong ∆BMC vuông tại M có MH là đường cao Ta có:   \[H{M^2} = HC.HB \Rightarrow \frac{{HM}}{{HB}} = \frac{{HC}}{{HM}}\] (4)

    Từ (3) và (4) suy ra: \[\frac{{ME}}{{BE}} = \frac{{HC}}{{HM}}\left( {\rm{5}} \right) \Rightarrow ME.HM = BE.HC\](đpcm)

    c) Vì \[\widehat {MHC} = {90^0}\](do MH\[ \bot \]BC) nên đường tròn ngoại tiếp ∆MHC có đường kính là MC

    \[ \Rightarrow \widehat {MKC} = {90^0}\](góc nội tiếp chắn nửa đường tròn)

    MN là đường kính của đường tròn (O) nên \[\widehat {MKN} = {90^0}\](góc nội tiếp chắn nửa đường tròn)

    \[ \Rightarrow \widehat {MKC} + \widehat {MKN} = {180^0}\]

    \[ \Rightarrow \]3 điểm C, K, N thẳng hàng                           (*)

    ∆MHC ∆BMC (g.g) \[ \Rightarrow \frac{{HC}}{{MH}} = \frac{{MC}}{{BM}}\].

    Mà MB = BN (do ∆MBN cân tại B)

    \[ \Rightarrow \]\[\frac{{HC}}{{HM}} = \frac{{MC}}{{BN}}\], kết hợp với \[\frac{{ME}}{{BE}} = \frac{{HC}}{{HM}}\] (theo (5) )

    Suy ra: \[\frac{{MC}}{{BN}} = \frac{{ME}}{{BE}}\] . Mà \[\widehat {EBN} = \widehat {EMC} = {90^0}\]\[ \Rightarrow \]∆MCE ∆BNE (c.g.c)

    \[ \Rightarrow \widehat {MEC} = \widehat {BEN}\], mà \[\widehat {MEC} + \widehat {BEC} = {180^0}\] (do 3 điểm M, E, B thẳng hàng)

    \[ \Rightarrow \widehat {BEC} + \widehat {BEN} = {180^0}\]

    \[ \Rightarrow \] 3 điểm C, E, N thẳng hàng                          (**)

    Từ (*) và (**) suy ra 4 điểm C, K, E, N thẳng hàng

    \[ \Rightarrow \]3 điểm C, K, E thẳng hàng (đpcm)

Lời giải

Đổi 1 giờ 30 phút = 1,5 giờ.

    Gọi vận tốc xe đạp của bạn Chiến là \[x\] (km/h, \[x > 0\])

    Vận tốc của ô tô là \[x + 35\](km/h)

    Quãng đường bạn Chiến đi bằng xe đạp là: \[7x\] (km)

    Quãng đường bạn Chiến đi bằng ô tô là: \[1,5(x + 35)\](km)

    Do tổng quãng đường bạn Chiến đi là 180km nên ta có phương trình:

    \[7x + 1,5(x + 35) = 180\]\[ \Leftrightarrow 7x + 1,5x + 52,2 = 180 \Leftrightarrow 8,5x = 127,5 \Leftrightarrow x = 15\](thỏa mãn)

    Vậy bạn Chiến đi bằng xe đạp với vận tốc là 15 km/h.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP