Câu hỏi:

12/07/2024 2,207

1) Xác định hàm số bậc nhất y = ax + b, biết rằng đồ thị hàm số đi qua điểm M(1; –1) và N(2; 1).

2) Cho phương trình: \[{x^2} - 2mx + {m^2} - m + 3 = 0\] (1), với m là tham số.

    a) Giải phương trình (1) với m = 4.

    b) Tìm các giá trị của m để phương trình (1) có hai nghiệm \[{x_1},\,\,{x_2}\]và biểu thức:

    \[P = {x_1}{x_2} - {x_1} - {x_2}\]đạt giá trị nhỏ nhất.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Vì đồ thị hàm số đi qua điểm M(1; –1) nên \[a + b = - 1\]

              đồ thị hàm số đi qua điểm N(2; 1) nên \[2a + b = 1\]

     Yêu cầu bài toán \[ \Leftrightarrow \]\[\left\{ \begin{array}{l}a + b = - 1\\2a + b = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 3\end{array} \right.\]

    Vậy hàm số phải tìm là y = 2x – 3.

2)      

a) Với m = 4, phương trình (1) trở thành: \[{x^2} - 8x + 15 = 0\]. Có \[\Delta = 1 > 0\]

    Phương trình có hai nghệm phân biệt \[{x_1} = 3;\,\,{x_2} = 5;\]

b) Ta có: ∆' = \[{\left( { - m} \right)^2} - 1.\left( {{m^2} - m + 3} \right) = {m^2} - {m^2} + m - 3 = m - 3\].

    Phương trình (1) có hai nghiệm \[{x_1},\,\,{x_2}\] khi ∆' \[ \ge \]0 \[ \Leftrightarrow \,m - 3 \ge 0 \Leftrightarrow m \ge 3\]

Với \[m \ge 3\], theo định lí Vi–ét ta có: \[\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}.{x_2} = {m^2} - m + 3\end{array} \right.\]

    Theo bài ra: \[P = {x_1}{x_2} - {x_1} - {x_2} = {x_1}{x_2} - ({x_1} + {x_2})\]

    Áp đụng định lí Vi–ét ta được:

    \[P = {m^2} - m + 3 - 2m = {m^2} - 3m + 3\,\,\,\,\, = m(m - 3) + 3\]

    \[m \ge 3\]nên \[m(m - 3) \ge 0\], suy ra \[P \ge 3\]. Dấu " = " xảy ra khi m = 3.

    Vậy giá trị nhỏ nhất của P là 3 khi m = 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O) có hai đường kính AB và MN vuông góc với nhau. Trên tia đối của tia MA lấy điểm C khác điểm M. Kẻ MH vuông góc với BC (H thuộc BC).

          a) Chứng minh BOMH là tứ giác nội tiếp.

          b) MB cắt OH tại E. Chứng minh ME.MH = BE.HC.

          c) Gọi giao điểm của đường tròn (O) với đường tròn ngoại tiếp ∆MHC là K. Chứng minh 3 điểm C, K, E thẳng hàng.

Xem đáp án » 12/07/2024 55,200

Câu 2:

Tình cảm gia đình có sức mạnh phi trường. Bạn Vì Quyết Chiến – Cậu bé 13 tuổi qua thương nhớ em trai của mình đã vượt qua một quãng đường dài 180km từ Sơn La đến bệnh viện  Nhi Trung ương Hà Nội để thăm em. Sau khi đi bằng xe đạp 7 giờ, bạn ấy được lên xe khách và đi tiếp 1 giờ 30 phút nữa thì đến nơi. Biết vận tốc của xe khách lớn hơn vận tốc của xe đạp là 35 km/h. Tính vận tốc xe đạp của bạn Chiến.

Xem đáp án » 12/07/2024 5,448

Câu 3:

Giải phương trình: \[\sqrt {5{x^2} + 27x + 25} - 5\sqrt {x + 1} = \sqrt {{x^2} - 4} .\]

Xem đáp án » 12/07/2024 2,970

Câu 4:

Rút gọn biểu thức sau:

    a) \[A = \left( {\sqrt {12}  - 2\sqrt 5 } \right)\sqrt 3  + \sqrt {60} .\]

    b) \[B = \frac{{\sqrt {4x} }}{{x - 3}}.\sqrt {\frac{{{x^2} - 6x + 9}}{x}} \,\]với 0 < x < 3.

Xem đáp án » 13/07/2024 1,787

Bình luận


Bình luận