Câu hỏi:

12/07/2024 150,916

Cho đường tròn (O) có hai đường kính AB và MN vuông góc với nhau. Trên tia đối của tia MA lấy điểm C khác điểm M. Kẻ MH vuông góc với BC (H thuộc BC).

          a) Chứng minh BOMH là tứ giác nội tiếp.

          b) MB cắt OH tại E. Chứng minh ME.MH = BE.HC.

          c) Gọi giao điểm của đường tròn (O) với đường tròn ngoại tiếp ∆MHC là K. Chứng minh 3 điểm C, K, E thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
 Media VietJack

    a) Ta có: \[\widehat {MOB} = {90^0}\] (do AB\[ \bot \]MN) và \[\widehat {MHB} = {90^0}\](do MH\[ \bot \]BC)

    Suy ra: \[\widehat {MOB} + \widehat {MHB} = {90^0} + {90^0} = {180^0}\]

    \[ \Rightarrow \]Tứ giác BOMH nội tiếp.

    b) ∆OMB vuông cân tại O nên \[\widehat {OBM} = \widehat {OMB}\]    (1)

    Tứ giác BOMH nội tiếp nên \[\widehat {OBM} = \widehat {OHM}\] (cùng chắn cung OM)

    \[\widehat {OMB} = \widehat {OHB}\] (cùng chắn cung OB)    (2)

    Từ (1) và (2) suy ra: \[\widehat {OHM} = \widehat {OHB}\]

      \[ \Rightarrow \] HO là tia phân giác của \[\widehat {MHB}\] \[ \Rightarrow \frac{{ME}}{{BE}} = \frac{{MH}}{{HB}}\] (3)

      Áp dụng hệ thức lượng trong ∆BMC vuông tại M có MH là đường cao Ta có:   \[H{M^2} = HC.HB \Rightarrow \frac{{HM}}{{HB}} = \frac{{HC}}{{HM}}\] (4)

    Từ (3) và (4) suy ra: \[\frac{{ME}}{{BE}} = \frac{{HC}}{{HM}}\left( {\rm{5}} \right) \Rightarrow ME.HM = BE.HC\](đpcm)

    c) Vì \[\widehat {MHC} = {90^0}\](do MH\[ \bot \]BC) nên đường tròn ngoại tiếp ∆MHC có đường kính là MC

    \[ \Rightarrow \widehat {MKC} = {90^0}\](góc nội tiếp chắn nửa đường tròn)

    MN là đường kính của đường tròn (O) nên \[\widehat {MKN} = {90^0}\](góc nội tiếp chắn nửa đường tròn)

    \[ \Rightarrow \widehat {MKC} + \widehat {MKN} = {180^0}\]

    \[ \Rightarrow \]3 điểm C, K, N thẳng hàng                           (*)

    ∆MHC ∆BMC (g.g) \[ \Rightarrow \frac{{HC}}{{MH}} = \frac{{MC}}{{BM}}\].

    Mà MB = BN (do ∆MBN cân tại B)

    \[ \Rightarrow \]\[\frac{{HC}}{{HM}} = \frac{{MC}}{{BN}}\], kết hợp với \[\frac{{ME}}{{BE}} = \frac{{HC}}{{HM}}\] (theo (5) )

    Suy ra: \[\frac{{MC}}{{BN}} = \frac{{ME}}{{BE}}\] . Mà \[\widehat {EBN} = \widehat {EMC} = {90^0}\]\[ \Rightarrow \]∆MCE ∆BNE (c.g.c)

    \[ \Rightarrow \widehat {MEC} = \widehat {BEN}\], mà \[\widehat {MEC} + \widehat {BEC} = {180^0}\] (do 3 điểm M, E, B thẳng hàng)

    \[ \Rightarrow \widehat {BEC} + \widehat {BEN} = {180^0}\]

    \[ \Rightarrow \] 3 điểm C, E, N thẳng hàng                          (**)

    Từ (*) và (**) suy ra 4 điểm C, K, E, N thẳng hàng

    \[ \Rightarrow \]3 điểm C, K, E thẳng hàng (đpcm)

Bình luận


Bình luận

ᏦᏂᎯᏁᎶᎶᏂᏫᎦᎿ
17:40 - 31/05/2025

giúp tôi nhé

Ảnh đính kèm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đổi 1 giờ 30 phút = 1,5 giờ.

    Gọi vận tốc xe đạp của bạn Chiến là \[x\] (km/h, \[x > 0\])

    Vận tốc của ô tô là \[x + 35\](km/h)

    Quãng đường bạn Chiến đi bằng xe đạp là: \[7x\] (km)

    Quãng đường bạn Chiến đi bằng ô tô là: \[1,5(x + 35)\](km)

    Do tổng quãng đường bạn Chiến đi là 180km nên ta có phương trình:

    \[7x + 1,5(x + 35) = 180\]\[ \Leftrightarrow 7x + 1,5x + 52,2 = 180 \Leftrightarrow 8,5x = 127,5 \Leftrightarrow x = 15\](thỏa mãn)

    Vậy bạn Chiến đi bằng xe đạp với vận tốc là 15 km/h.

Lời giải

ĐKXĐ: \[x \ge 2\]

    Ta có:

    \[\sqrt {5{x^2} + 27x + 25} - 5\sqrt {x + 1} = \sqrt {{x^2} - 4} \]

\[ \Leftrightarrow \sqrt {5{x^2} + 27x + 25} = 5\sqrt {x + 1} + \sqrt {{x^2} - 4} \]

\[ \Leftrightarrow 5{x^2} + 27x + 25 = {x^2} - 4 + 25x + 25 + 10\sqrt {(x + 1)({x^2} - 4)} \]

\[\begin{array}{l} \Leftrightarrow 4{x^2} + 2x + 4 = 10\sqrt {x + 1)({x^2} - 4)} \\ \Leftrightarrow 2{x^2} + x + 2 = 5\sqrt {(x + 1)({x^2} - 4)} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\end{array}\]

    Cách 1:

    (1) \[ \Leftrightarrow \left( {{x^2} - 2x - 4} \right)\left( {4{x^2} - 13x - 26} \right) = 0\]

    Giải ra được:

    \[x = 1 - \sqrt 5 \](loại); \[x = 1 + \sqrt 5 \](nhận); \[x = \frac{{13 + 3\sqrt {65} }}{8}\] (nhận); \[x = \frac{{13 - 3\sqrt {65} }}{8}\] (loại)

    Cách 2:

    (1) \[ \Leftrightarrow 5\sqrt {\left( {{x^2} - x - 2} \right)\left( {x + 2} \right)} = 2\left( {{x^2} - x - 2} \right) + 3\left( {x + 2} \right)\]        (2)

    Đặt \[a = \sqrt {{x^2} - x + 2} ;\,\,b = \sqrt {x + 2} \,\,(a \ge 0;\,\,b \ge 0)\]

    Lúc đó, phương trình (2) trở thành:

    \[5ab = 2{a^2} + 3{b^2}\]\( \Leftrightarrow 2{a^2} - 5ab + 3{b^2} = 0 \Leftrightarrow \left( {a - b} \right)\left( {2a - 3b} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}a = b\\2a = 3b\end{array} \right.\)    (*)

– Với a = b thì \[\sqrt {{x^2} - x - 2} = \sqrt {x + 2} \Leftrightarrow {x^2} - 2x - 4 \Leftrightarrow \left[ \begin{array}{l}x = 1 - \sqrt 5 (ktm)\\x = 1 + \sqrt 5 (tm)\end{array} \right.\]

– Với 2a = 3b thì \[2\sqrt {{x^2} - x - 2} = 3\sqrt {x + 2} \Leftrightarrow 4{x^2} - 13x - 26 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{13 + 3\sqrt {65} }}{8}\,\,(tm)\\x = \frac{{13 - 3\sqrt {65} }}{8}\,\,(ktm)\end{array} \right.\]

    Vậy phương trình đã cho có hai nghiệm: \[x = 1 + \sqrt 5 \]\[x = \frac{{13 + 3\sqrt {65} }}{8}\] .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay