Câu hỏi:

08/01/2020 97,562

Có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp giải: Sử dụng biến cố đối và các quy tắc đếm cơ bản

Lời giải:

Ta đi làm phần đối của giả thiết, tức là chọn 6 học sinh giỏi chỉ lấy từ một khối hoặc hai khối.

Chọn 6 học sinh giỏi trong 15 học sinh giỏi của 3 khối có C156 = 5005 cách

Số cách chọn 6 học sinh giỏi bằng cách chỉ lấy từ 1 khối 12 là C66 = 1 

Chọn 6 học sinh giỏi trong 10 học sinh giỏi của 2 khối 12 và 11 có C106 = 210 cách, tuy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 210 - 1 = 209 cách

Chọn 6 học sinh giỏi trong 11 học sinh giỏi của 2 khối 12 và 10 có C116 = 462 cách, uy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12  => số cách chọn là 462 - 1 = 461 cách.

Chọn 6 học sinh giỏi trong 9 học sinh giỏi của 2 khối 11 và 10 có C96 = 84cách

Suy ra số cách chọn thỏa mãn yêu cầu bài toán là 5005 - 209 - 461 - 84 - 1 = 4250 cách

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong một lớp học gồm 15 học sinh nam và 10 học sinh nữ. Giáo viên gọi ngẫu nhiên 4 học sinh lên bảng giải bài tập. Xác suất để 4 học sinh được gọi đó cả nam lẫn nữ là

Xem đáp án » 15/01/2020 55,852

Câu 2:

Cho đa giác đều có 20 đỉnh. Số tam giác được tạo nên từ các đỉnh này là

Xem đáp án » 14/01/2020 51,559

Câu 3:

Một lô hàng có 20 sản phẩm, trong đó có 4 phế phẩm. Lấy tùy ý 6 sản phẩm từ lô hàng đó. Hãy tính xác suất để trong 6 sản phẩm lấy ra có không quá 1 phế phẩm

Xem đáp án » 15/01/2020 50,356

Câu 4:

Cho 8 điểm, trong đó không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 8 điểm trên?

Xem đáp án » 15/01/2020 48,524

Câu 5:

Trên giá sách có 4 quyển sách toán, 5 quyển sách lý, 6 quyển sách hóa. Lấy ngẫu nhiên 3quyển sách. Tính xác suất để 3 quyển sách được lấy ra có ít nhất một quyển sách là toán.

Xem đáp án » 08/01/2020 47,162

Câu 6:

Cho A, B là hai biến cố xung khắc. Biết P(A) = 13; P(B) = 14. Tính P(A  B)

Xem đáp án » 13/01/2020 36,893

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store