Câu hỏi:
08/01/2020 128,383Có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh.
Câu hỏi trong đề: Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải !!
Quảng cáo
Trả lời:
Đáp án C
Phương pháp giải: Sử dụng biến cố đối và các quy tắc đếm cơ bản
Lời giải:
Ta đi làm phần đối của giả thiết, tức là chọn 6 học sinh giỏi chỉ lấy từ một khối hoặc hai khối.
Chọn 6 học sinh giỏi trong 15 học sinh giỏi của 3 khối có cách
Số cách chọn 6 học sinh giỏi bằng cách chỉ lấy từ 1 khối 12 là
Chọn 6 học sinh giỏi trong 10 học sinh giỏi của 2 khối 12 và 11 có cách, tuy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 210 - 1 = 209 cách
Chọn 6 học sinh giỏi trong 11 học sinh giỏi của 2 khối 12 và 10 có cách, uy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 462 - 1 = 461 cách.
Chọn 6 học sinh giỏi trong 9 học sinh giỏi của 2 khối 11 và 10 có cách
Suy ra số cách chọn thỏa mãn yêu cầu bài toán là 5005 - 209 - 461 - 84 - 1 = 4250 cách
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 211
Đã bán 244
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong một lớp học gồm 15 học sinh nam và 10 học sinh nữ. Giáo viên gọi ngẫu nhiên 4 học sinh lên bảng giải bài tập. Xác suất để 4 học sinh được gọi đó cả nam lẫn nữ là
Câu 2:
Một lô hàng có 20 sản phẩm, trong đó có 4 phế phẩm. Lấy tùy ý 6 sản phẩm từ lô hàng đó. Hãy tính xác suất để trong 6 sản phẩm lấy ra có không quá 1 phế phẩm
Câu 3:
Trên giá sách có 4 quyển sách toán, 5 quyển sách lý, 6 quyển sách hóa. Lấy ngẫu nhiên 3quyển sách. Tính xác suất để 3 quyển sách được lấy ra có ít nhất một quyển sách là toán.
Câu 4:
Cho đa giác đều có 20 đỉnh. Số tam giác được tạo nên từ các đỉnh này là
Câu 5:
Cho 8 điểm, trong đó không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 8 điểm trên?
Câu 6:
Trong kì thi thử THPT Quốc Gia, An làm để thi trắc nghiệm môn Toán. Đề thi gồm 50 câu hỏi, mỗi câu có 4 phương án trả lời, trong đó chỉ có một phương án đúng; trả lời đúng mỗi câu được 0,2 điểm. An trả lời hết các câu hỏi và chắc chắn đúng 45 câu, 5 câu còn lại An chọn ngẫu nhiên. Tính xác suất để điểm thi môn Toán của An không dưới 9,5 điểm.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận