Câu hỏi:

09/01/2020 13,054

Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh khối 10, 5 học sinh khối 11 và 3 học sinh khối 12 thành một hàng ngang. Xác suất để không có học sinh khối 11 nào xếp giữa hai học sinh khối 10 bằng 

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Ω “Xếp 10 học sinh thành một hàng ngang” => n(Ω) = 10!

A Không có học sinh khối 11 nào xếp giữa hai học sinh khối 10”.

Trường hợp I (2 học sinh khối 10 đứng cạnh nhau):

Bước 1: Buộc 2 học sinh khối 10 thành một phần tử X và đổi chỗ 2 học sinh đó có 2! cách.

Bước 2: Xếp phần tử X và 8 học sinh còn lại thành một hàng ngang có 9! cách.

Vậy, có 9!.2! cách.

Trường hợp II (giữa 2 học sinh khối 101 học sinh khối 12):

Bước 1: Chọn 1 học sinh khối 12 trong 3 học sinh có C31 cách.

Bước 2: Buộc 2 học sinh khối 10 và học sinh khối 12 đã chọn thành một phần tử X rồi đổi chỗ 2 học sinh khối 10 có 2! cách.

Bước 3: Xếp phần tử X và 7 học sinh còn lại thành một hàng ngang có 8! cách.

Vậy, có C31.2!.8! cách.

Trường hợp III (giữa 2 học sinh khối 102 học sinh khối 12):

Bước 1: Chọn 2 học sinh khối 12 trong 3 học sinh có C32 cách.

Bước 2: Buộc 2 học sinh khối 10 và 2 học sinh khối 12 đã chọn thành một phần tử X rồi đổi chỗ 2 học sinh khối 10, đổi chỗ 2 học sinh khối 12 có 2!.2! cách.

Bước 3: Xếp phần tử X và 6 học sinh còn lại thành một hàng ngang có 7! cách.

Vậy, có C32.2!.2!.7!cách.

Trường hợp IV (giữa 2 học sinh khối 103 học sinh khối 12):

Bước 1: Buộc 2 học sinh khối 10 và 3 học sinh khối 12 đã chọn thành một phần tử X rồi đổi chỗ 2 học sinh khối 10, đổi chỗ 3 học sinh khối 12 có 2!.3! cách.

Bước 2: Xếp phần tử X và 5 học sinh còn lại thành một hàng ngang có 6! cách.

Vậy, có 2!.3!.6! cách.

Theo quy tắc cộng, ta được 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một tổ có 5 học sinh nữ và 6 học sinh nam. Xếp ngẫu nhiên các học sinh trên thành hàng ngang để chụp ảnh. Tính xác suất để không có hai học sinh nữ nào đứng cạnh nhau.

Xem đáp án » 08/01/2020 60,481

Câu 2:

Một lớp có 20 học sinh nam và 18 học sinh nữ. Chọn ngẫu nhiên một học sinh. Tính xác suất chọn được một học sinh nữ.

Xem đáp án » 09/01/2020 46,572

Câu 3:

Trên kệ sách có 10 cuốn sách Toán và 5 cuốn sách Văn. Người ta lấy ngẫu nhiên lần lượt 3 cuốn sách mà không để lại. Tính xác suất để được hai cuốn sách đầu là Toán, cuốn thứ ba là Văn.

Xem đáp án » 08/01/2020 37,257

Câu 4:

Một hộp có 10 quả cầu xanh, 5 quả cầu đỏ. Lấy ngẫu nhiên 5 quả từ hộp đó. Xác suất để được 5 quả có đủ hai màu là

Xem đáp án » 09/01/2020 29,261

Câu 5:

Một hộp đựng 7 viên bi đỏ đánh số từ 1 đến 7 và 6 viên bi xanh đánh số từ 1 đến 6. Hỏi có bao nhiêu cách chọn hai viên bi từ hộp đó sao cho chúng khác màu và khác số? 

Xem đáp án » 09/01/2020 27,637

Câu 6:

Cho tập hợp A có 20 phần tử. Có bao nhiêu tập con của A khác rỗng và số phần tử là số chẵn?

Xem đáp án » 08/01/2020 27,529

Câu 7:

Tổ 1 của lớp 10A có 10 học sinh gồm 6 nam và 4 nữ. Cần chọn ra 2 bạn trong tổ 1 để phân công trực nhật. Xác suất để chọn được 1 bạn nam và 1 bạn nữ là

Xem đáp án » 08/01/2020 23,426

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store