Câu hỏi:

09/01/2020 4,135

Gọi S là tập hợp các số tự nhiên, mỗi số không có quá 3 chữ số và tổng các chữ số bằng 9. Lấy ngẫu nhiên một số từ . Tính xác suất để số lấy ra có chữ số hàng trăm là 4.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

- Bổ đề: Cho , ta có:

“Số nghiệm nguyên không âm của phương trình 

Thật vậy: Đặt 

Khi đó  và 

Hiển nhiên số nghiệm nguyên không âm của (1) bằng số nghiệm nguyên dương của (2)

 

- Xếp m + n chữ số 1 thành một hàng: có 1 cách.

- Xếp n - 1 dấu gạch ngang "-" vào trong m + n -1 khoảng trống giữa các chữ số 1 (mỗi khoảng trống nhiều nhất một dấu gạch ngang) để chia dãy m + n  chữ số 1 thành n phần (mỗi phần có ít nhất một chữ số 1): có Cm+n-1n-1 cách.

Mỗi phần được chia ra có tổng các chữ số 1 lần lượt là 

và cho ta một nghiệm nguyên dương của phương trình (2).

Do đó số nghiệm nguyên dương của phương trình (2) là 

Suy ra số nghiệm nguyên không âm của phương trình (1) là Cm+n-1n-1 (đpcm)

Bây giờ ta sẽ áp dụng kết quả của bổ đề để giải bài toán đã cho:

- Tính số phần tử của tập S:

Gọi phần tử của S là abc¯  vơí và a + b + c = 9 (*)

Theo bổ đề thì số nghiệm nguyên không âm của (*) là 

Vậy n(S) = 55

- Tính số các phần tử của S có chữ số hàng trăm bằng 4.

Khi đó a= 4 và b + c = 5 (**).

Theo bổ đề thì số nghiệm nguyên không âm của (**) là

Vậy có tất cả 6phần tử của S có chữ số hàng trăm bằng 4.

- Xét phép thử: “Lấy ngẫu nhiên một số từ tập S” và biến cố A: “Số lấy ra có chữ số hàng trăm bằng 4 

Ta có 

Vậy xác suất của biến cố A là  

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Số phần tử của không gian mẫu là 

Gọi A là biến cố "không có hai học sinh nữ nào đứng cạnh nhau".

Mỗi phần tử của A tương ứng với 1 hàng ngang gồm 11 bạn đã cho mà không có hai nữ xếp cạnh nhau. Để xếp được 1 hàng như vậy ta thực hiện liên tiếp hai bước:

Bước 1: Xếp 6 bạn nam thành một hàng ngang, có 6!= 720 cách

Bước 2: Xếp 5 bạn nữ vào 7 vị trí xen giữa hai nam hoặc ngoài cùng (để 2 nữ không cạnh nhau), có A75 = 2520 cách.

Vậy n(A) =720.2520 = 1814400

Xác suất cần tìm là 

Lời giải

Chọn B

Ta có: 

Gọi A là biến cố: “Chọn được một học sinh nữ”.

Xác suất để chọn được một học sinh nữ là: 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay