Câu hỏi:

11/06/2022 409 Lưu

Mặt phẳng nào dưới đây cắt mặt cầu (S):x2+y2+z22x2y4z3=0  theo thiết diện là một đường tròn?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Mặt cầu (S) có tâm I(1;1;2) và bán kính R=1+1+4+3=3 .

Đáp án A: d(I,(P))=|1+2.1+2.2+6|12+22+22=133>3  nên mặt phẳng không cắt mặt cầu.

Đáp án B: d(I,(Q))=|11+2|12+22+22=23<3  nên mặt phẳng cắt mặt cầu theo giao tuyến là một đường tròn.

Đáp án D: d(I,(R))=|1+2.1+3.2+3|12+22+22=123=4>3  nên mặt phẳng không cắt mặt cầu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

TXĐ: x3;x1;x1

Ÿlimx1x+32x21=limx1(x+32)(x+3+2)(x+3+2)(x1)(x+1)=limx1x1(x+3+2)(x1)(x+1)

 =limx11(x+3+2)(x+1)=18+nên  không là TCĐ của đồ thị hàm số đã cho.

Ÿlimx(1)+x+32x21=  nên x=1  là TCĐ của đồ thị hàm số đã cho.

Vậy đồ thị hàm số có 1 đường tiệm cận đứng .

Lời giải

Đáp án B

Ta có f2(cosx)+(m2018)f(cosx)+m2019=0[f(cosx)=1f(cosx)=2019m

+ Với f(cosx)=1[cosx=0cosx=a>1 (loai)cosx=0 .

Phương trình này có hai nghiệm x1=π2  x2=3π2  thuộc đoạn [0;2π] .

+ Với f(cosx)=2019m  ta cần tìm điều kiện để phương trình này có 4 nghiệm phân biệt thuộc [0;2π]  khác x1, x2 .

Đặt t=cosx[1;1]  với mọi x[0;2π]   ta được f(t)=2019m  (1).

Với t=1  phương trình (1) cho đúng một nghiệm  x=π với t=0 phương trình cho hai nghiệm x1, x2 .

Với mỗi t(1;1]\{0}   phương trình cho hai nghiệm x[0;2π]  khác x1, x2  .

Vậy điều kiện cần tìm là phương trình (1) phải có hai nghiệm phân biệt t(1;1]\{0}

1<2019m12018m<2020.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP