Câu hỏi:

11/06/2022 1,808 Lưu

Sự tăng trưởng của một loài vi khuẩn tuân theo công thức  trong đó A là số lượng vi khuẩn ban đầu, r là tỷ lệ tăng trưởng (r>0 ) và t là thời gian tăng trưởng. Biết số lượng vi khuẩn ban đầu có 250 con và sau 12 giờ là 1500 con. Hỏi sau bao lâu thì số lượng vi khuẩn tăng gấp 216 lần số vi khuẩn ban đầu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Ta có: 1500=250.er.12r=ln612

Gọi t (giờ) là thời gian để số lượng vi khuẩn tăng gấp 216 lần số lượng vi khuẩn ban đầu.

Ta có: 216A0=A0.ertrt=ln216t=ln216r=36 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

TXĐ: x3;x1;x1

Ÿlimx1x+32x21=limx1(x+32)(x+3+2)(x+3+2)(x1)(x+1)=limx1x1(x+3+2)(x1)(x+1)

 =limx11(x+3+2)(x+1)=18+nên  không là TCĐ của đồ thị hàm số đã cho.

Ÿlimx(1)+x+32x21=  nên x=1  là TCĐ của đồ thị hàm số đã cho.

Vậy đồ thị hàm số có 1 đường tiệm cận đứng .

Lời giải

Đáp án B

Ta có f2(cosx)+(m2018)f(cosx)+m2019=0[f(cosx)=1f(cosx)=2019m

+ Với f(cosx)=1[cosx=0cosx=a>1 (loai)cosx=0 .

Phương trình này có hai nghiệm x1=π2  x2=3π2  thuộc đoạn [0;2π] .

+ Với f(cosx)=2019m  ta cần tìm điều kiện để phương trình này có 4 nghiệm phân biệt thuộc [0;2π]  khác x1, x2 .

Đặt t=cosx[1;1]  với mọi x[0;2π]   ta được f(t)=2019m  (1).

Với t=1  phương trình (1) cho đúng một nghiệm  x=π với t=0 phương trình cho hai nghiệm x1, x2 .

Với mỗi t(1;1]\{0}   phương trình cho hai nghiệm x[0;2π]  khác x1, x2  .

Vậy điều kiện cần tìm là phương trình (1) phải có hai nghiệm phân biệt t(1;1]\{0}

1<2019m12018m<2020.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP